IDEAS home Printed from https://ideas.repec.org/a/spr/operea/v24y2024i3d10.1007_s12351-024-00843-8.html
   My bibliography  Save this article

A perspective analysis of obligatory vacation and retention of impatient purchaser on queueing-inventory with retrial policy

Author

Listed:
  • N. Nithya

    (Alagappa University)

  • N. Anbazhagan

    (Alagappa University)

  • S. Amutha

    (Alagappa University)

  • Gyanendra Prasad Joshi

    (Sejong University)

Abstract

The manuscript exemplifies a retrial queueing-inventory system with a maximum inventory level of $$S (=a \times n)$$ S ( = a × n ) units, where a and n are finite positive integers. It consists of an impatient purchaser’s retention, an obligatory vacation, and an ordinary vacation. It comprises a single Poisson arrival who demands exactly a single unit from inventory. Inventories are filled in accordance with the (s, Q) ordering policy. The server must take an obligatory vacation after serving each ‘n’ number of items, where ‘n’ is fixed. And the server takes an ordinary vacation once the server finds zero inventory after returning from its obligatory vacation. The purchasers may enter the orbit of infinite size with a prefixed probability when the server is on any kind of vacation. The impatient purchasers in the orbit have the decision of abandoning the orbit with a probability of $$p_1$$ p 1 or retaining it with a complimentary probability of $$q_1$$ q 1 . Vacations, replenishment, retention of impatient purchasers, and inter-retry duration are distributed exponentially. The stationary state probability vector is derived using the matrix geometric method. In the steady-state case, the joint probability distribution of the number of purchasers in the orbit and the inventory level is evaluated. Numerical computations have been used to determine the convexity of the overall expected cost rate for various ‘n’ values. It is based on the results of the cost factors. Some effects of retention and the obligatory vacation in the system are scrutinized.

Suggested Citation

  • N. Nithya & N. Anbazhagan & S. Amutha & Gyanendra Prasad Joshi, 2024. "A perspective analysis of obligatory vacation and retention of impatient purchaser on queueing-inventory with retrial policy," Operational Research, Springer, vol. 24(3), pages 1-25, September.
  • Handle: RePEc:spr:operea:v:24:y:2024:i:3:d:10.1007_s12351-024-00843-8
    DOI: 10.1007/s12351-024-00843-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12351-024-00843-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12351-024-00843-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Artalejo & A. Krishnamoorthy & M. Lopez-Herrero, 2006. "Numerical analysis of(s, S) inventory systems with repeated attempts," Annals of Operations Research, Springer, vol. 141(1), pages 67-83, January.
    2. Dudin, A. N. & Krishnamoorthy, A. & Joshua, V. C. & Tsarenkov, G. V., 2004. "Analysis of the BMAP/G/1 retrial system with search of customers from the orbit," European Journal of Operational Research, Elsevier, vol. 157(1), pages 169-179, August.
    3. Frank Haight, 1959. "Queueing with reneging," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 2(1), pages 186-197, December.
    4. I. Padmavathi & B. Sivakumar & G. Arivarignan, 2015. "A retrial inventory system with single and modified multiple vacation for server," Annals of Operations Research, Springer, vol. 233(1), pages 335-364, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agassi Melikov & Ramil Mirzayev & Sajeev S. Nair, 2022. "Double Sources Queuing-Inventory System with Hybrid Replenishment Policy," Mathematics, MDPI, vol. 10(14), pages 1-16, July.
    2. V. Radhamani & B. Sivakumar & G. Arivarignan, 2022. "A Comparative Study on Replenishment Policies for Perishable Inventory System with Service Facility and Multiple Server Vacation," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 229-265, March.
    3. Chesoong Kim & Valentina Klimenok & Alexander Dudin, 2014. "A G/M/1 retrial queue with constant retrial rate," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 509-529, July.
    4. Katsunobu Sasanuma, 2021. "Asymptotic Analysis for Systems with Deferred Abandonment," Mathematics, MDPI, vol. 9(18), pages 1-11, September.
    5. Gao, Shan & Wang, Jinting, 2014. "Performance and reliability analysis of an M/G/1-G retrial queue with orbital search and non-persistent customers," European Journal of Operational Research, Elsevier, vol. 236(2), pages 561-572.
    6. Yacov Satin & Rostislav Razumchik & Ivan Kovalev & Alexander Zeifman, 2023. "Ergodicity and Related Bounds for One Particular Class of Markovian Time—Varying Queues with Heterogeneous Servers and Customer’s Impatience," Mathematics, MDPI, vol. 11(9), pages 1-15, April.
    7. P., Vijaya Laxmi & M.L., Soujanya, 2015. "Perishable inventory system with service interruptions, retrial demands and negative customers," Applied Mathematics and Computation, Elsevier, vol. 262(C), pages 102-110.
    8. Falin, G.I., 2010. "A single-server batch arrival queue with returning customers," European Journal of Operational Research, Elsevier, vol. 201(3), pages 786-790, March.
    9. T. Deepak, 2015. "On a retrial queueing model with single/batch service and search of customers from the orbit," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 493-520, July.
    10. Wang, Fong-Fan, 2023. "An efficient optimization procedure for location-inventory problems with (S-1, S) policy and retrial demands," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 664-688.
    11. M. Nithya & Gyanendra Prasad Joshi & C. Sugapriya & S. Selvakumar & N. Anbazhagan & Eunmok Yang & Ill Chul Doo, 2022. "Analysis of Stochastic State-Dependent Arrivals in a Queueing-Inventory System with Multiple Server Vacation and Retrial Facility," Mathematics, MDPI, vol. 10(17), pages 1-29, August.
    12. Jeganathan, K. & Abdul Reiyas, M., 2020. "Two parallel heterogeneous servers Markovian inventory system with modified and delayed working vacations," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 273-304.
    13. Asmita Tamuli & Dhruba Das & Amit Choudhury, 2024. "Optimizing the Performance of Multi-server Heterogeneous Queueing Systems with Dynamic Customer Behaviour," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 86(2), pages 366-414, November.
    14. Economou, Antonis & Logothetis, Dimitrios & Manou, Athanasia, 2022. "The value of reneging for strategic customers in queueing systems with server vacations/failures," European Journal of Operational Research, Elsevier, vol. 299(3), pages 960-976.
    15. I. Padmavathi & B. Sivakumar & G. Arivarignan, 2015. "A retrial inventory system with single and modified multiple vacation for server," Annals of Operations Research, Springer, vol. 233(1), pages 335-364, October.
    16. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.
    17. Arpita Roy & Shib Sankar Sana & Kripasindhu Chaudhuri, 2018. "Optimal Pricing of competing retailers under uncertain demand-a two layer supply chain model," Annals of Operations Research, Springer, vol. 260(1), pages 481-500, January.
    18. Amina Angelika Bouchentouf & Aicha Messabihi, 2018. "Heterogeneous two-server queueing system with reverse balking and reneging," OPSEARCH, Springer;Operational Research Society of India, vol. 55(2), pages 251-267, June.
    19. Navid Ghaffarzadegan & Richard C. Larson, 2018. "SD meets OR: a new synergy to address policy problems," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 327-353, January.
    20. Lyes Ikhlef & Ouiza Lekadir & Djamil Aïssani, 2016. "MRSPN analysis of Semi-Markovian finite source retrial queues," Annals of Operations Research, Springer, vol. 247(1), pages 141-167, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:operea:v:24:y:2024:i:3:d:10.1007_s12351-024-00843-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.