IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v140y2019icp144-154.html
   My bibliography  Save this article

Robust sufficient dimension reduction via ball covariance

Author

Listed:
  • Zhang, Jia
  • Chen, Xin

Abstract

Sufficient dimension reduction is an important branch of dimension reduction, which includes variable selection and projection methods. Most of the sufficient dimension reduction methods are sensitive to outliers and heavy-tailed predictors, and require strict restrictions on the predictors and the response. In order to widen the applicability of sufficient dimension reduction, we propose BCov-SDR, a novel sufficient dimension reduction approach that is based on a recently developed dependence measure: ball covariance. Compared with other popular sufficient dimension reduction methods, our approach requires rather mild conditions on the predictors and the response, and is robust to outliers or heavy-tailed distributions. BCov-SDR does not require the specification of a forward regression model and allows for discrete or categorical predictors and multivariate response. The consistency of the BCov-SDR estimator of the central subspace is obtained without imposing any moment conditions on the predictors. Simulations and real data studies illustrate the applicability and versatility of our proposed method.

Suggested Citation

  • Zhang, Jia & Chen, Xin, 2019. "Robust sufficient dimension reduction via ball covariance," Computational Statistics & Data Analysis, Elsevier, vol. 140(C), pages 144-154.
  • Handle: RePEc:eee:csdana:v:140:y:2019:i:c:p:144-154
    DOI: 10.1016/j.csda.2019.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947319301380
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2019.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lili Xia & Tingyu Lai & Zhongzhan Zhang, 2023. "An Adaptive-to-Model Test for Parametric Functional Single-Index Model," Mathematics, MDPI, vol. 11(8), pages 1-25, April.
    2. Emmanuel Jordy Menvouta & Sven Serneels & Tim Verdonck, 2022. "Sparse dimension reduction based on energy and ball statistics," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 951-975, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:140:y:2019:i:c:p:144-154. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.