A copula formulation for multivariate latent Markov models
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-024-00919-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gordon Anderson, Alessio Farcomeni, Maria Grazia Pittau and Roberto Zelli, 2019.
"Multidimensional Nation Wellbeing, More Equal yet More Polarized: An Analysis of the Progress of Human Development Since 1990,"
Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(1), pages 1-22, March.
- Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2018. "Multidimensional Nation Wellbeing, More Equal yet More Polarized: An Analysis of the Progress of Human Development since 1990," Working Papers tecipa-602, University of Toronto, Department of Economics.
- Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
- Andrea Brandolini & Eliana Viviano, 2016.
"Behind and beyond the (head count) employment rate,"
Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(3), pages 657-681, June.
- Andrea Brandolini & Eliana Viviano, 2014. "Behind and beyond the (headcount) employment rate," Temi di discussione (Economic working papers) 965, Bank of Italy, Economic Research and International Relations Area.
- Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
- Marius Ötting & Dimitris Karlis, 2023. "Football tracking data: a copula-based hidden Markov model for classification of tactics in football," Annals of Operations Research, Springer, vol. 325(1), pages 167-183, June.
- F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
- L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
- Francesco Donat & Giampiero Marra, 2018. "Simultaneous equation penalized likelihood estimation of vehicle accident injury severity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(4), pages 979-1001, August.
- F. Bartolucci & A. Farcomeni & F. Pennoni, 2014.
"Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates,"
TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
- Bartolucci, Francesco & Farcomeni, Alessio & Pennoni, Fulvia, 2012. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," MPRA Paper 39023, University Library of Munich, Germany.
- Zilko, Aurelius A. & Kurowicka, Dorota, 2016. "Copula in a multivariate mixed discrete–continuous model," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 28-55.
- Alessio Farcomeni, 2015. "Generalized Linear Mixed Models Based on Latent Markov Heterogeneity Structures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1127-1135, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
- Alessio Farcomeni & Monia Ranalli & Sara Viviani, 2021. "Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 462-480, June.
- Gordon Anderson, Alessio Farcomeni, Maria Grazia Pittau and Roberto Zelli, 2019.
"Multidimensional Nation Wellbeing, More Equal yet More Polarized: An Analysis of the Progress of Human Development Since 1990,"
Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(1), pages 1-22, March.
- Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2018. "Multidimensional Nation Wellbeing, More Equal yet More Polarized: An Analysis of the Progress of Human Development since 1990," Working Papers tecipa-602, University of Toronto, Department of Economics.
- Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
- Francesco Dotto & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "A dynamic inhomogeneous latent state model for measuring material deprivation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 495-516, February.
- Fulvia Pennoni & Beata Bal-Domańska, 2022. "NEETs and Youth Unemployment: A Longitudinal Comparison Across European Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(2), pages 739-761, July.
- Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
- Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2018.
"Bivariate integer-autoregressive process with an application to mutual fund flows,"
Post-Print
hal-04590149, HAL.
- Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2019. "Bivariate integer-autoregressive process with an application to mutual fund flows," Post-Print hal-04582262, HAL.
- Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2019. "Bivariate integer-autoregressive process with an application to mutual fund flows," Post-Print halshs-02418967, HAL.
- Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2023. "A Causal Latent Transition Model With Multivariate Outcomes and Unobserved Heterogeneity: Application to Human Capital Development," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 387-419, August.
- Antonio Punzo & Salvatore Ingrassia & Antonello Maruotti, 2021. "Multivariate hidden Markov regression models: random covariates and heavy-tailed distributions," Statistical Papers, Springer, vol. 62(3), pages 1519-1555, June.
- Tullio, Federico & Bartolucci, Francesco, 2019. "Evaluating time-varying treatment effects in latent Markov models: An application to the effect of remittances on poverty dynamics," MPRA Paper 91459, University Library of Munich, Germany.
- Alessio Farcomeni, 2015. "Latent class recapture models with flexible behavioural response," Statistica, Department of Statistics, University of Bologna, vol. 75(1), pages 5-17.
- Francesco Bartolucci & Alessio Farcomeni, 2022. "A hidden Markov space–time model for mapping the dynamics of global access to food," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 246-266, January.
- Marbac, Matthieu & Sedki, Mohammed, 2017. "A family of block-wise one-factor distributions for modeling high-dimensional binary data," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 130-145.
- Ulf Böckenholt & Blakeley McShane, 2014. "Comments on: Latent Markov models: a review of the general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 469-472, September.
- Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2016.
"Causal Latent Markov Model for the Comparison of Multiple Treatments in Observational Longitudinal Studies,"
Journal of Educational and Behavioral Statistics, , vol. 41(2), pages 146-179, April.
- Bartolucci, Francesco & Pennoni, Fulvia & Vittadini, Giorgio, 2015. "Causal latent Markov model for the comparison of multiple treatments in observational longitudinal studies," MPRA Paper 66492, University Library of Munich, Germany.
- Fulvia Pennoni & Ewa Genge, 2020. "Analysing the course of public trust via hidden Markov models: a focus on the Polish society," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 29(2), pages 399-425, June.
- Mauro Laudicella & Paolo Li Donni, 2022.
"The dynamic interdependence in the demand of primary and emergency secondary care: A hidden Markov approach,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 521-536, April.
- Laudicella, Mauro & Li Donni, Paolo, 2021. "The dynamic interdependence in the demand of primary and emergency secondary care: A hidden Markov approach," DaCHE discussion papers 2021:1, University of Southern Denmark, Dache - Danish Centre for Health Economics.
- Darolles, Serge & Fol, Gaëlle Le & Lu, Yang & Sun, Ran, 2019.
"Bivariate integer-autoregressive process with an application to mutual fund flows,"
Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 181-203.
- Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2019. "Bivariate integer-autoregressive process with an application to mutual fund flows," Post-Print halshs-02418967, HAL.
- Veraart, Almut E.D., 2019. "Modeling, simulation and inference for multivariate time series of counts using trawl processes," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 110-129.
More about this item
Keywords
Frank copula; Mixed responses; Panel data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:33:y:2024:i:3:d:10.1007_s11749-024-00919-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.