IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v33y2024i3d10.1007_s11749-024-00919-9.html
   My bibliography  Save this article

A copula formulation for multivariate latent Markov models

Author

Listed:
  • Alfonso Russo

    (Tor Vergata University of Rome)

  • Alessio Farcomeni

    (Tor Vergata University of Rome)

Abstract

We specify a general formulation for multivariate latent Markov models for panel data, where outcomes are possibly of mixed-type (categorical, discrete, continuous). Conditionally on a time-varying discrete latent variable and covariates, the joint distribution of outcomes simultaneously observed is expressed through a parametric copula. We therefore do not make any conditional independence assumption. The observed likelihood is maximized by means of an expectation–maximization algorithm. In a simulation study, we argue how modeling the residual contemporary dependence might be crucial in order to avoid bias in the parameter estimates. We illustrate through an original application to assessment of poverty through direct and indirect indicators in a cohort of Italian households.

Suggested Citation

  • Alfonso Russo & Alessio Farcomeni, 2024. "A copula formulation for multivariate latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 33(3), pages 731-751, September.
  • Handle: RePEc:spr:testjl:v:33:y:2024:i:3:d:10.1007_s11749-024-00919-9
    DOI: 10.1007/s11749-024-00919-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-024-00919-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-024-00919-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gordon Anderson, Alessio Farcomeni, Maria Grazia Pittau and Roberto Zelli, 2019. "Multidimensional Nation Wellbeing, More Equal yet More Polarized: An Analysis of the Progress of Human Development Since 1990," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(1), pages 1-22, March.
    2. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    3. Andrea Brandolini & Eliana Viviano, 2016. "Behind and beyond the (head count) employment rate," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(3), pages 657-681, June.
    4. Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
    5. Marius Ötting & Dimitris Karlis, 2023. "Football tracking data: a copula-based hidden Markov model for classification of tactics in football," Annals of Operations Research, Springer, vol. 325(1), pages 167-183, June.
    6. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Rejoinder on: Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 484-486, September.
    7. L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
    8. Francesco Donat & Giampiero Marra, 2018. "Simultaneous equation penalized likelihood estimation of vehicle accident injury severity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(4), pages 979-1001, August.
    9. F. Bartolucci & A. Farcomeni & F. Pennoni, 2014. "Latent Markov models: a review of a general framework for the analysis of longitudinal data with covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 433-465, September.
    10. Zilko, Aurelius A. & Kurowicka, Dorota, 2016. "Copula in a multivariate mixed discrete–continuous model," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 28-55.
    11. Alessio Farcomeni, 2015. "Generalized Linear Mixed Models Based on Latent Markov Heterogeneity Structures," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1127-1135, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon Anderson & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "Rectangular latent Markov models for time‐specific clustering, with an analysis of the wellbeing of nations," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 68(3), pages 603-621, April.
    2. Gordon Anderson & Alessio Farcomeni & Grazia Pittau & Roberto Zelli, 2017. "Rectangular latent Markov models for time-specific clustering," Working Papers tecipa-589, University of Toronto, Department of Economics.
    3. Gordon Anderson, Alessio Farcomeni, Maria Grazia Pittau and Roberto Zelli, 2019. "Multidimensional Nation Wellbeing, More Equal yet More Polarized: An Analysis of the Progress of Human Development Since 1990," Journal of Economic Development, Chung-Ang Unviersity, Department of Economics, vol. 44(1), pages 1-22, March.
    4. Francesco Dotto & Alessio Farcomeni & Maria Grazia Pittau & Roberto Zelli, 2019. "A dynamic inhomogeneous latent state model for measuring material deprivation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 495-516, February.
    5. Alessio Farcomeni & Monia Ranalli & Sara Viviani, 2021. "Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 462-480, June.
    6. Fulvia Pennoni & Beata Bal-Domańska, 2022. "NEETs and Youth Unemployment: A Longitudinal Comparison Across European Countries," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 162(2), pages 739-761, July.
    7. Gery Geenens, 2024. "(Re-)Reading Sklar (1959)—A Personal View on Sklar’s Theorem," Mathematics, MDPI, vol. 12(3), pages 1-7, January.
    8. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    9. Fulvia Pennoni & Francesco Bartolucci & Silvia Pandolfi, 2024. "Variable Selection for Hidden Markov Models with Continuous Variables and Missing Data," Journal of Classification, Springer;The Classification Society, vol. 41(3), pages 568-589, November.
    10. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    11. Antonello Maruotti & Jan Bulla & Tanya Mark, 2019. "Assessing the influence of marketing activities on customer behaviors: a dynamic clustering approach," METRON, Springer;Sapienza Università di Roma, vol. 77(1), pages 19-42, April.
    12. Serge Darolles & Gaëlle Le Fol & Yang Lu & Ran Sun, 2018. "Bivariate integer-autoregressive process with an application to mutual fund flows," Post-Print hal-04590149, HAL.
    13. Fantazzini, Dean, 2020. "Discussing copulas with Sergey Aivazian: a memoir," MPRA Paper 102317, University Library of Munich, Germany.
    14. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    15. Francesco Bartolucci & Fulvia Pennoni & Giorgio Vittadini, 2023. "A Causal Latent Transition Model With Multivariate Outcomes and Unobserved Heterogeneity: Application to Human Capital Development," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 387-419, August.
    16. Esther Acquah & Lorenzo Carbonari & Alessio Farcomeni & Giovanni Trovato, 2023. "Institutions and economic development: new measurements and evidence," Empirical Economics, Springer, vol. 65(4), pages 1693-1728, October.
    17. Lorenzo Carbonari & Alessio Farcomeni & Cosimo Petracchi & Giovanni Trovato, 2024. "Macroprudential Policies and Credit Volatility," Working Paper series 24-16, Rimini Centre for Economic Analysis.
    18. Antonio Punzo & Salvatore Ingrassia & Antonello Maruotti, 2021. "Multivariate hidden Markov regression models: random covariates and heavy-tailed distributions," Statistical Papers, Springer, vol. 62(3), pages 1519-1555, June.
    19. Tullio, Federico & Bartolucci, Francesco, 2019. "Evaluating time-varying treatment effects in latent Markov models: An application to the effect of remittances on poverty dynamics," MPRA Paper 91459, University Library of Munich, Germany.
    20. Luca Brusa & Francesco Bartolucci & Fulvia Pennoni, 2023. "Tempered expectation-maximization algorithm for the estimation of discrete latent variable models," Computational Statistics, Springer, vol. 38(3), pages 1391-1424, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:33:y:2024:i:3:d:10.1007_s11749-024-00919-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.