IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v325y2023i1d10.1007_s10479-022-04660-0.html
   My bibliography  Save this article

Football tracking data: a copula-based hidden Markov model for classification of tactics in football

Author

Listed:
  • Marius Ötting

    (Bielefeld University)

  • Dimitris Karlis

    (Athens University of Economics and Business)

Abstract

Driven by recent advances in technology, tracking devices allow to collect high-frequency data on the position of players in (association) football matches and in many other sports. Although such data sets are available to every professional team, most teams still rely on time-consuming video analysis when analysing future opponents, for example with regard to how goals were scored or a team’s general style of play. In this contribution, we provide a data-driven approach for automated classification of tactics in football. For that purpose, we consider hidden Markov models (HMMs) to analyse high-frequency tracking data, where the underlying states serve for a team’s tactic. In particular, as space control in football has been considered a major driver of success, we focus on the effective playing space, which is the convex hull created by the players excluding the goalkeeper. This quantity relates to both playing style and team behavior. Using copula-based HMMs, we model jointly the effective playing space of both teams to account for the competitive nature of the game. Our model thus provides an estimate of a team’s playing style at each time point, which can be beneficial for team managers but also of huge interest to football fans.

Suggested Citation

  • Marius Ötting & Dimitris Karlis, 2023. "Football tracking data: a copula-based hidden Markov model for classification of tactics in football," Annals of Operations Research, Springer, vol. 325(1), pages 167-183, June.
  • Handle: RePEc:spr:annopr:v:325:y:2023:i:1:d:10.1007_s10479-022-04660-0
    DOI: 10.1007/s10479-022-04660-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04660-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04660-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Angel Ric & Carlota Torrents & Bruno Gonçalves & Lorena Torres-Ronda & Jaime Sampaio & Robert Hristovski, 2017. "Dynamics of tactical behaviour in association football when manipulating players' space of interaction," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-16, July.
    2. Daniel Cervone & Alex D’Amour & Luke Bornn & Kirk Goldsberry, 2016. "A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 585-599, April.
    3. Jennifer Pohle & Roland Langrock & Floris M. Beest & Niels Martin Schmidt, 2017. "Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 270-293, September.
    4. Lopez Michael J., 2020. "Bigger data, better questions, and a return to fourth down behavior: an introduction to a special issue on tracking datain the National football League," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(2), pages 73-79, June.
    5. Marius Ötting & Roland Langrock & Antonello Maruotti, 2023. "A copula-based multivariate hidden Markov model for modelling momentum in football," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 9-27, March.
    6. Härdle, Wolfgang Karl & Okhrin, Ostap & Wang, Weining, 2015. "Hidden Markov Structures For Dynamic Copulae," Econometric Theory, Cambridge University Press, vol. 31(5), pages 981-1015, October.
    7. Martino, Andrea & Guatteri, Giuseppina & Paganoni, Anna Maria, 2020. "Hidden Markov Models for multivariate functional data," Statistics & Probability Letters, Elsevier, vol. 167(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marius Ötting & Roland Langrock & Antonello Maruotti, 2023. "A copula-based multivariate hidden Markov model for modelling momentum in football," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 9-27, March.
    2. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    3. Mevin B. Hooten & Ruth King & Roland Langrock, 2017. "Guest Editor’s Introduction to the Special Issue on “Animal Movement Modeling”," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 224-231, September.
    4. Mallepalle Sarah & Yurko Ronald & Pelechrinis Konstantinos & Ventura Samuel L., 2020. "Extracting NFL tracking data from images to evaluate quarterbacks and pass defenses," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(2), pages 95-120, June.
    5. Valerio Ficcadenti & Roy Cerqueti & Ciro Hosseini Varde’i, 2023. "A rank-size approach to analyse soccer competitions and teams: the case of the Italian football league “Serie A"," Annals of Operations Research, Springer, vol. 325(1), pages 85-113, June.
    6. Floriane Cardiec & Sophie Bertrand & Matthew J Witt & Kristian Metcalfe & Brendan J Godley & Catherine McClellan & Raul Vilela & Richard J Parnell & François le Loc’h, 2020. "“Too Big To Ignore”: A feasibility analysis of detecting fishing events in Gabonese small-scale fisheries," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    7. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2021. "Spatial Performance Indicators and Graphs in Basketball," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 725-738, August.
    8. Deshpande Sameer K. & Evans Katherine, 2020. "Expected hypothetical completion probability," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 16(2), pages 85-94, June.
    9. Paola Zuccolotto & Marco Sandri & Marica Manisera, 2023. "Spatial performance analysis in basketball with CART, random forest and extremely randomized trees," Annals of Operations Research, Springer, vol. 325(1), pages 495-519, June.
    10. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
    11. Kęstutis Matulaitis & Tomas Bietkis, 2021. "Prediction of Offensive Possession Ends in Elite Basketball Teams," IJERPH, MDPI, vol. 18(3), pages 1-11, January.
    12. Ricardo Ferraz & Bruno Gonçalves & Diogo Coutinho & Rafael Oliveira & Bruno Travassos & Jaime Sampaio & Mário C. Marques, 2020. "Effects of Knowing the Task’s Duration on Soccer Players’ Positioning and Pacing Behaviour during Small-Sided Games," IJERPH, MDPI, vol. 17(11), pages 1-12, May.
    13. Marc S. Paolella, 2017. "The Univariate Collapsing Method for Portfolio Optimization," Econometrics, MDPI, vol. 5(2), pages 1-33, May.
    14. Roland Langrock & Timo Adam & Vianey Leos‐Barajas & Sina Mews & David L. Miller & Yannis P. Papastamatiou, 2018. "Spline‐based nonparametric inference in general state‐switching models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(3), pages 179-200, August.
    15. Naumzik, Christof & Feuerriegel, Stefan & Nielsen, Anne Molgaard, 2023. "Data-driven dynamic treatment planning for chronic diseases," European Journal of Operational Research, Elsevier, vol. 305(2), pages 853-867.
    16. Luca De Angelis & J. James Reade, 2023. "Home advantage and mispricing in indoor sports’ ghost games: the case of European basketball," Annals of Operations Research, Springer, vol. 325(1), pages 391-418, June.
    17. Timo Adam & Roland Langrock & Christian H. Weiß, 2019. "Penalized estimation of flexible hidden Markov models for time series of counts," METRON, Springer;Sapienza Università di Roma, vol. 77(2), pages 87-104, August.
    18. Gianluca Mastrantonio, 2022. "The modelling of movement of multiple animals that share behavioural features," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 932-950, August.
    19. Galeano, Javier & Gómez, Miguel-Ángel & Rivas, Fernando & Buldú, Javier M., 2022. "Using Markov chains to identify player’s performance in badminton," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    20. McHale, Ian G. & Holmes, Benjamin, 2023. "Estimating transfer fees of professional footballers using advanced performance metrics and machine learning," European Journal of Operational Research, Elsevier, vol. 306(1), pages 389-399.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:325:y:2023:i:1:d:10.1007_s10479-022-04660-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.