IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v103y2016icp28-55.html
   My bibliography  Save this article

Copula in a multivariate mixed discrete–continuous model

Author

Listed:
  • Zilko, Aurelius A.
  • Kurowicka, Dorota

Abstract

The use of different copula-based models to represent the joint distribution of an eight-dimensional mixed discrete and continuous problem consisting of five discrete and three continuous variables is investigated. The discussion starts with the theoretical properties of the copula-based models. Four different models are constructed for the data collected for the purpose of predicting the length of disruption caused by problems with the train detection system in the Dutch railway network and their performance is tested. The more complex models turn out to represent the data better. Nevertheless, it is shown that the simpler eight dimensional Normal copula still constitutes a statistically sound model for the data.

Suggested Citation

  • Zilko, Aurelius A. & Kurowicka, Dorota, 2016. "Copula in a multivariate mixed discrete–continuous model," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 28-55.
  • Handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:28-55
    DOI: 10.1016/j.csda.2016.02.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947316300895
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2016.02.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anastasios Panagiotelis & Claudia Czado & Harry Joe, 2012. "Pair Copula Constructions for Multivariate Discrete Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1063-1072, September.
    2. W. Breymann & A. Dias & P. Embrechts, 2003. "Dependence structures for multivariate high-frequency data in finance," Quantitative Finance, Taylor & Francis Journals, vol. 3(1), pages 1-14.
    3. Stöber, Jakob & Hong, Hyokyoung Grace & Czado, Claudia & Ghosh, Pulak, 2015. "Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 28-39.
    4. Cooke, R.M. & Kurowicka, D. & Wilson, K., 2015. "Sampling, conditionalizing, counting, merging, searching regular vines," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 4-18.
    5. Genest, Christian & Nešlehová, Johanna, 2007. "A Primer on Copulas for Count Data," ASTIN Bulletin, Cambridge University Press, vol. 37(2), pages 475-515, November.
    6. Michael S. Smith & Mohamad A. Khaled, 2012. "Estimation of Copula Models With Discrete Margins via Bayesian Data Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 290-303, March.
    7. Peter X.-K. Song & Mingyao Li & Ying Yuan, 2009. "Joint Regression Analysis of Correlated Data Using Gaussian Copulas," Biometrics, The International Biometric Society, vol. 65(1), pages 60-68, March.
    8. Denuit, Michel & Lambert, Philippe, 2005. "Constraints on concordance measures in bivariate discrete data," Journal of Multivariate Analysis, Elsevier, vol. 93(1), pages 40-57, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Fan & Li, Heng & Dong, Chao, 2021. "Understanding near-miss count data on construction sites using greedy D-vine copula marginal regression," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    2. Marbac, Matthieu & Sedki, Mohammed, 2017. "A family of block-wise one-factor distributions for modeling high-dimensional binary data," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 130-145.
    3. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    4. Woraphon Yamaka & Paravee Maneejuk & Rungrapee Phadkantha & Wiranya Puntoon & Payap Tarkhamtham & Tatcha Sudtasan, 2023. "Survival and Duration Analysis of MSMEs in Chiang Mai, Thailand: Evidence from the Post-COVID-19 Recovery," Mathematics, MDPI, vol. 11(4), pages 1-21, February.
    5. Weiping Zhang & MengMeng Zhang & Yu Chen, 2020. "A Copula-Based GLMM Model for Multivariate Longitudinal Data with Mixed-Types of Responses," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(2), pages 353-379, November.
    6. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaotian Zheng & Athanasios Kottas & Bruno Sansó, 2023. "Bayesian geostatistical modeling for discrete‐valued processes," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    2. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    3. L. L. Henn, 2022. "Limitations and performance of three approaches to Bayesian inference for Gaussian copula regression models of discrete data," Computational Statistics, Springer, vol. 37(2), pages 909-946, April.
    4. Smith, Michael Stanley, 2023. "Implicit Copulas: An Overview," Econometrics and Statistics, Elsevier, vol. 28(C), pages 81-104.
    5. Michael Stanley Smith, 2021. "Implicit Copulas: An Overview," Papers 2109.04718, arXiv.org.
    6. Lu Yang & Claudia Czado, 2022. "Two‐part D‐vine copula models for longitudinal insurance claim data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(4), pages 1534-1561, December.
    7. Siem Jan Koopman & Rutger Lit & André Lucas & Anne Opschoor, 2018. "Dynamic discrete copula models for high‐frequency stock price changes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(7), pages 966-985, November.
    8. Panagiotelis, Anastasios & Czado, Claudia & Joe, Harry & Stöber, Jakob, 2017. "Model selection for discrete regular vine copulas," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 138-152.
    9. Pravin Trivedi & David Zimmer, 2017. "A Note on Identification of Bivariate Copulas for Discrete Count Data," Econometrics, MDPI, vol. 5(1), pages 1-11, February.
    10. Elizabeth D. Schifano & Himchan Jeong & Ved Deshpande & Dipak K. Dey, 2021. "Fully and empirical Bayes approaches to estimating copula-based models for bivariate mixed outcomes using Hamiltonian Monte Carlo," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 133-152, March.
    11. Stöber, Jakob & Hong, Hyokyoung Grace & Czado, Claudia & Ghosh, Pulak, 2015. "Comorbidity of chronic diseases in the elderly: Patterns identified by a copula design for mixed responses," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 28-39.
    12. Kaveh Salehzadeh Nobari, 2021. "Pair copula constructions of point-optimal sign-based tests for predictive linear and nonlinear regressions," Papers 2111.04919, arXiv.org.
    13. Aas Kjersti & Nagler Thomas & Jullum Martin & Løland Anders, 2021. "Explaining predictive models using Shapley values and non-parametric vine copulas," Dependence Modeling, De Gruyter, vol. 9(1), pages 62-81, January.
    14. Roger M. Cooke & Harry Joe & Bo Chang, 2020. "Vine copula regression for observational studies," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 104(2), pages 141-167, June.
    15. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," The Warwick Economics Research Paper Series (TWERPS) 1051, University of Warwick, Department of Economics.
    16. Aristidis Nikoloulopoulos & Dimitris Karlis, 2010. "Regression in a copula model for bivariate count data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(9), pages 1555-1568.
    17. Geenens Gery, 2020. "Copula modeling for discrete random vectors," Dependence Modeling, De Gruyter, vol. 8(1), pages 417-440, January.
    18. Azam, Kazim & Pitt, Michael, 2014. "Bayesian Inference for a Semi-Parametric Copula-based Markov Chain," Economic Research Papers 270232, University of Warwick - Department of Economics.
    19. Zhang, Shulin & Okhrin, Ostap & Zhou, Qian M. & Song, Peter X.-K., 2016. "Goodness-of-fit test for specification of semiparametric copula dependence models," Journal of Econometrics, Elsevier, vol. 193(1), pages 215-233.
    20. Fantazzini, Dean, 2020. "Discussing copulas with Sergey Aivazian: a memoir," MPRA Paper 102317, University Library of Munich, Germany.

    More about this item

    Keywords

    Copula; Vine; Mixed models;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:103:y:2016:i:c:p:28-55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.