Bandwidth matrix selectors for kernel regression
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-017-0709-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Max Köhler & Anja Schindler & Stefan Sperlich, 2014.
"A Review and Comparison of Bandwidth Selection Methods for Kernel Regression,"
International Statistical Review, International Statistical Institute, vol. 82(2), pages 243-274, August.
- Max Köhler & Anja Schindler & Stefan Sperlich, 2011. "A Review and Comparison of Bandwidth Selection Methods for Kernel Regression," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 95, Courant Research Centre PEG.
- Gonzalez Manteiga, W. & Martinez Miranda, M. D. & Perez Gonzalez, A., 2004. "The choice of smoothing parameter in nonparametric regression through Wild Bootstrap," Computational Statistics & Data Analysis, Elsevier, vol. 47(3), pages 487-515, October.
- Droge, Bernd, 1994. "Some Comments on Cross-Validation," SFB 373 Discussion Papers 1994,7, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Zhang, Xibin & Brooks, Robert D. & King, Maxwell L., 2009.
"A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation,"
Journal of Econometrics, Elsevier, vol. 153(1), pages 21-32, November.
- Xibin Zhang & Robert D. Brooks & Maxwell L. King, 2007. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Monash Econometrics and Business Statistics Working Papers 11/07, Monash University, Department of Econometrics and Business Statistics.
- Ivana Horová & Jiří Zelinka, 2007. "Contribution to the bandwidth choice for kernel density estimates," Computational Statistics, Springer, vol. 22(1), pages 31-47, April.
- L. Yang & R. Tschernig, 1999. "Multivariate bandwidth selection for local linear regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(4), pages 793-815.
- Magnus, J.R. & Neudecker, H., 1979. "The commutation matrix : Some properties and applications," Other publications TiSEM d0b1e779-7795-4676-ac98-1, Tilburg University, School of Economics and Management.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Andrea Meilán-Vila & Mario Francisco-Fernández & Rosa M. Crujeiras & Agnese Panzera, 2021. "Nonparametric multiple regression estimation for circular response," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 650-672, September.
- Max Köhler & Anja Schindler & Stefan Sperlich, 2014.
"A Review and Comparison of Bandwidth Selection Methods for Kernel Regression,"
International Statistical Review, International Statistical Institute, vol. 82(2), pages 243-274, August.
- Max Köhler & Anja Schindler & Stefan Sperlich, 2011. "A Review and Comparison of Bandwidth Selection Methods for Kernel Regression," Courant Research Centre: Poverty, Equity and Growth - Discussion Papers 95, Courant Research Centre PEG.
- Kateřina Konečná & Ivanka Horová, 2019. "Maximum likelihood method for bandwidth selection in kernel conditional density estimate," Computational Statistics, Springer, vol. 34(4), pages 1871-1887, December.
- Rong Liu & Lijian Yang, 2008. "Kernel estimation of multivariate cumulative distribution function," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 661-677.
- Paulo M. D. C. Parente & Richard J. Smith, 2021.
"Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
- Paulo M.D.C. Parente & Richard J. Smith, 2018. "Quasi-Maximum Likelihood and the Kernel Block Bootstrap for Nonlinear Dynamic Models," Working Papers REM 2018/59, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Paulo Parente & Richard J. Smith, 2019. "Quasi-maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," CeMMAP working papers CWP60/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chen Tong & Peter Reinhard Hansen & Ilya Archakov, 2024. "Cluster GARCH," Papers 2406.06860, arXiv.org.
- Inés Barbeito & Ricardo Cao & Stefan Sperlich, 2023. "Bandwidth selection for statistical matching and prediction," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 418-446, March.
- D.A. Turkington, 1997. "Some results in matrix calculus and an example of their application to econometrics," Economics Discussion / Working Papers 97-07, The University of Western Australia, Department of Economics.
- Rolf Tschernig & Lijian Yang, 2000.
"Nonparametric Estimation of Generalized Impulse Response Functions,"
Econometric Society World Congress 2000 Contributed Papers
1417, Econometric Society.
- Tschernig, Rolf & Yang, Lijian, 2000. "Nonparametric estimation of generalized impulse response function," SFB 373 Discussion Papers 2000,89, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
- Loperfido, Nicola, 2021. "Some theoretical properties of two kurtosis matrices, with application to invariant coordinate selection," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
- Koen Jochmans, 2024. "Nonparametric identification and estimation of stochastic block models from many small networks," Post-Print hal-04672521, HAL.
- Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2019.
"How Sensitive Are VAR Forecasts to Prior Hyperparameters? An Automated Sensitivity Analysis,"
Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 229-248,
Emerald Group Publishing Limited.
- Joshua C.C. Chan & Liana Jacobi & Dan Zhu, 2018. "How sensitive are VAR forecasts to prior hyperparameters? An automated sensitivity analysis," CAMA Working Papers 2018-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- repec:hum:wpaper:sfb649dp2013-024 is not listed on IDEAS
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015.
"Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval,"
Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2012. "Bayesian Approaches to Non-parametric Estimation of Densities on the Unit Interval," Monash Econometrics and Business Statistics Working Papers 3/12, Monash University, Department of Econometrics and Business Statistics.
- Zhang, Rong & Inder, Brett A. & Zhang, Xibin, 2015. "Bayesian estimation of a discrete response model with double rules of sample selection," Computational Statistics & Data Analysis, Elsevier, vol. 86(C), pages 81-96.
- repec:hum:wpaper:sfb649dp2012-015 is not listed on IDEAS
- Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2009.
"Asymmetric multivariate normal mixture GARCH,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2129-2154, April.
- Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2008. "Asymmetric multivariate normal mixture GARCH," CFS Working Paper Series 2008/07, Center for Financial Studies (CFS).
- O. J. Boxma & E. J. Cahen & D. Koops & M. Mandjes, 2019. "Linear Stochastic Fluid Networks: Rare-Event Simulation and Markov Modulation," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 125-153, March.
- Lütkepohl,Helmut & Krätzig,Markus (ed.), 2004. "Applied Time Series Econometrics," Cambridge Books, Cambridge University Press, number 9780521547871, January.
- Loperfido, Nicola, 2014. "Linear transformations to symmetry," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 186-192.
- Guohua Feng & Chuan Wang & Xibin Zhang, 2019. "Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach," Journal of Productivity Analysis, Springer, vol. 51(1), pages 1-19, February.
- Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014.
"A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density,"
Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2013. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 20/13, Monash University, Department of Econometrics and Business Statistics.
More about this item
Keywords
Multivariate kernel regression; Constrained bandwidth matrix; Kernel smoothing; Mean integrated square error;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:3:d:10.1007_s00180-017-0709-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.