A general angular regression model for the analysis of data on animal movement in ecology
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shogo Kato, 2010. "A Markov process for circular data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 655-672, November.
- Kanti V. Mardia & Charles C. Taylor & Ganesh K. Subramaniam, 2007. "Protein Bioinformatics and Mixtures of Bivariate von Mises Distributions for Angular Data," Biometrics, The International Biometric Society, vol. 63(2), pages 505-512, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Joseph D. Bailey & Edward A. Codling, 2021. "Emergence of the wrapped Cauchy distribution in mixed directional data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(2), pages 229-246, June.
- Andrea Meilán-Vila & Mario Francisco-Fernández & Rosa M. Crujeiras & Agnese Panzera, 2021. "Nonparametric multiple regression estimation for circular response," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 650-672, September.
- Davy Paindaveine & Thomas Verdebout, 2019. "Inference for Spherical Location under High Concentration," Working Papers ECARES 2019-02, ULB -- Universite Libre de Bruxelles.
- Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
- Nicosia, Aurélien & Duchesne, Thierry & Rivest, Louis-Paul & Fortin, Daniel, 2017. "A general hidden state random walk model for animal movement," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 76-95.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jan Beran & Britta Steffens & Sucharita Ghosh, 2022. "On nonparametric regression for bivariate circular long-memory time series," Statistical Papers, Springer, vol. 63(1), pages 29-52, February.
- Fangpo Wang & Alan E. Gelfand, 2014. "Modeling Space and Space-Time Directional Data Using Projected Gaussian Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1565-1580, December.
- Toshihiro Abe & Hiroaki Ogata & Takayuki Shiohama & Hiroyuki Taniai, 2017. "Circular autocorrelation of stationary circular Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 275-290, October.
- Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
- Fernández-Durán Juan José & Gregorio-Domínguez MarÍa Mercedes, 2014. "Modeling angles in proteins and circular genomes using multivariate angular distributions based on multiple nonnegative trigonometric sums," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 1-18, February.
- Saptarshi Chakraborty & Samuel W. K. Wong, 2023. "On the circular correlation coefficients for bivariate von Mises distributions on a torus," Statistical Papers, Springer, vol. 64(2), pages 643-675, April.
- Mohammad Arashi & Najmeh Nakhaei Rad & Andriette Bekker & Wolf-Dieter Schubert, 2021. "Möbius Transformation-Induced Distributions Provide Better Modelling for Protein Architecture," Mathematics, MDPI, vol. 9(21), pages 1-24, October.
- Saptarshi Chakraborty & Tian Lan & Yiider Tseng & Samuel W.K. Wong, 2022. "Bayesian analysis of coupled cellular and nuclear trajectories for cell migration," Biometrics, The International Biometric Society, vol. 78(3), pages 1209-1220, September.
- Jan Beran & Sucharita Ghosh, 2020. "Estimating the Mean Direction of Strongly Dependent Circular Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(2), pages 210-228, March.
- Shogo Kato & Arthur Pewsey & M. C. Jones, 2022. "Tractable circula densities from Fourier series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 595-618, September.
- Marco Marzio & Stefania Fensore & Agnese Panzera & Charles C. Taylor, 2018. "Circular local likelihood," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 921-945, December.
- Hommola Kerstin & Gilks Walter R. & Mardia Kanti V., 2011. "Log-Linear Modelling of Protein Dipeptide Structure Reveals Interesting Patterns of Side-Chain-Backbone Interactions," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-27, January.
- Harvey, Andrew & Hurn, Stan & Palumbo, Dario & Thiele, Stephen, 2024. "Modelling circular time series," Journal of Econometrics, Elsevier, vol. 239(1).
- Anahita Nodehi & Mousa Golalizadeh & Mehdi Maadooliat & Claudio Agostinelli, 2021. "Estimation of parameters in multivariate wrapped models for data on a p-torus," Computational Statistics, Springer, vol. 36(1), pages 193-215, March.
- Xiaoping Zhan & Tiefeng Ma & Shuangzhe Liu & Kunio Shimizu, 2018. "Markov-Switching Linked Autoregressive Model for Non-continuous Wind Direction Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(3), pages 410-425, September.
- Fatemeh Hassanzadeh, 2021. "A smoothing spline model for multimodal and skewed circular responses: Applications in meteorology and oceanography," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
- Manolopoulou, Ioanna & Kepler, Thomas B. & Merl, Daniel M., 2012. "Mixtures of Gaussian wells: Theory, computation, and application," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3809-3820.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssc:v:65:y:2016:i:3:p:445-463. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.