IDEAS home Printed from https://ideas.repec.org/p/mia/wpaper/2014-01.html
   My bibliography  Save this paper

Gradient Based Smoothing Parameter Selection for Nonparametric Regression Estimation

Author

Listed:
  • Daniel J. Henderson

    (Department of Economics, State University of New York at Binghamton)

  • Qi Li

    (Department of Economics, Texas A&M University)

  • Christopher F. Parmeter

    (Department of Economics, University of Miami)

Abstract

Uncovering gradients is of crucial importance across a broad range of economic environments. Here we consider data-driven bandwidth selection based on the gradient of an unknown regression function. The procedure developed here is automatic and does not require initial estimation of unknown functions with pilot bandwidths. We prove that it delivers bandwidths which have the optimal rate of convergence for the gradient. Both simulated and empirical examples showcase the finite sample attraction of this new mechanism.

Suggested Citation

  • Daniel J. Henderson & Qi Li & Christopher F. Parmeter, 2013. "Gradient Based Smoothing Parameter Selection for Nonparametric Regression Estimation," Working Papers 2014-01, University of Miami, Department of Economics.
  • Handle: RePEc:mia:wpaper:2014-01
    as

    Download full text from publisher

    File URL: https://www.herbert.miami.edu/_assets/files/repec/WP2014-01.pdf
    File Function: First version, 2013
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Pierre-Andre Chiappori & Amit Gandhi & Bernard Salanie & Francois Salanie, 2009. "Identifying Preferences under Risk from Discrete Choices," American Economic Review, American Economic Association, vol. 99(2), pages 356-362, May.
    2. Peter Hall & Qi Li & Jeffrey S. Racine, 2007. "Nonparametric Estimation of Regression Functions in the Presence of Irrelevant Regressors," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 784-789, November.
    3. Racine, Jeff & Li, Qi, 2004. "Nonparametric estimation of regression functions with both categorical and continuous data," Journal of Econometrics, Elsevier, vol. 119(1), pages 99-130, March.
    4. Anglin, Paul M & Gencay, Ramazan, 1996. "Semiparametric Estimation of a Hedonic Price Function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 633-648, Nov.-Dec..
    5. Patrick Bajari & Matthew E. Kahn, 2005. "Estimating Housing Demand With an Application to Explaining Racial Segregation in Cities," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 20-33, January.
    6. Alicia H. Munnell, 1990. "How does public infrastructure affect regional economic performance?," Conference Series ; [Proceedings], Federal Reserve Bank of Boston, vol. 34, pages 69-112.
    7. Masry, Elias, 1996. "Multivariate regression estimation local polynomial fitting for time series," Stochastic Processes and their Applications, Elsevier, vol. 65(1), pages 81-101, December.
    8. James J. Heckman & Rosa L. Matzkin & Lars Nesheim, 2010. "Nonparametric Identification and Estimation of Nonadditive Hedonic Models," Econometrica, Econometric Society, vol. 78(5), pages 1569-1591, September.
    9. Daniel J. Henderson & Christopher F. Parmeter & Subal C. Kumbhakar, 2007. "Nonparametric estimation of a hedonic price function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(3), pages 695-699.
    10. Rice, John A., 1986. "Bandwidth choice for differentiation," Journal of Multivariate Analysis, Elsevier, vol. 19(2), pages 251-264, August.
    11. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    12. Baltagi, Badi H & Pinnoi, Nat, 1995. "Public Capital Stock and State Productivity Growth: Further Evidence from an Error Components Model," Empirical Economics, Springer, vol. 20(2), pages 351-359.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Wei & Cai, Zongwu & Li, Zheng & Su, Li, 2015. "Optimal smoothing in nonparametric conditional quantile derivative function estimation," Journal of Econometrics, Elsevier, vol. 188(2), pages 502-513.
    2. Shakeeb Khan & Arnaud Maurel & Yichong Zhang, 2023. "Informational Content of Factor Structures in Simultaneous Binary Response Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 385-410, Emerald Group Publishing Limited.
    3. Geng, Xin & Sun, Kai, 2019. "Gradient estimation of the local-constant semiparametric smooth coefficient model," Economics Letters, Elsevier, vol. 185(C).
    4. Léopold Simar & Ingrid Keilegom & Valentin Zelenyuk, 2017. "Nonparametric least squares methods for stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 47(3), pages 189-204, June.
    5. Li, Cong & Wang, Yanfei, 2016. "Gradient-based bandwidth selection for estimating average derivatives," Economics Letters, Elsevier, vol. 140(C), pages 19-22.
    6. Zhou, Jianhua & Parmeter, Christopher F. & Kumbhakar, Subal C., 2020. "Nonparametric estimation of the determinants of inefficiency in the presence of firm heterogeneity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1142-1152.
    7. Salim Bouzebda & Mohamed Chaouch & Sultana Didi Biha, 2022. "Asymptotics for function derivatives estimators based on stationary and ergodic discrete time processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 737-771, August.
    8. Centorrino, Samuele & Parmeter, Christopher F., 2024. "Nonparametric estimation of stochastic frontier models with weak separability," Journal of Econometrics, Elsevier, vol. 238(2).
    9. Xie, Qichang & Sun, Qiankun, 2019. "Computation and application of robust data-driven bandwidth selection for gradient function estimation," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 274-293.
    10. Christopher F. Parmeter & Valentin Zelenyuk, 2016. "A Bridge Too Far? The State of the Art in Combining the Virtues of Stochastic Frontier Analysis and Data Envelopement Analysis," Working Papers 2016-10, University of Miami, Department of Economics.
    11. De Monte Enrico, 2024. "Nonparametric Instrumental Regression with Two-Way Fixed Effects," Journal of Econometric Methods, De Gruyter, vol. 13(1), pages 49-66, January.
    12. Wei, Jie & Zhang, Yonghui, 2020. "A time-varying diffusion index forecasting model," Economics Letters, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Lin, Wei & Cai, Zongwu & Li, Zheng & Su, Li, 2015. "Optimal smoothing in nonparametric conditional quantile derivative function estimation," Journal of Econometrics, Elsevier, vol. 188(2), pages 502-513.
    3. Alan T. K. Wan & Shangyu Xie & Yong Zhou, 2017. "A varying coefficient approach to estimating hedonic housing price functions and their quantiles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(11), pages 1979-1999, August.
    4. Chu, Chi-Yang & Henderson, Daniel J. & Parmeter, Christopher F., 2017. "On discrete Epanechnikov kernel functions," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 79-105.
    5. Kuminoff, Nicolai V. & Parmeter, Christopher F. & Pope, Jaren C., 2008. "Hedonic Price Functions: Guidance On Empirical Specification," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6555, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    6. Daniel J. Henderson & Subal C. Kumbhakar, 2006. "Public and Private Capital Productivity Puzzle: A Nonparametric Approach," Southern Economic Journal, John Wiley & Sons, vol. 73(1), pages 219-232, July.
    7. Henderson, Daniel J. & Kumbhakar, Subal C. & Li, Qi & Parmeter, Christopher F., 2015. "Smooth coefficient estimation of a seemingly unrelated regression," Journal of Econometrics, Elsevier, vol. 189(1), pages 148-162.
    8. Carlos Felipe Balcázar & Lidia Ceriani & Sergio Olivieri & Marco Ranzani, 2017. "Rent‐Imputation for Welfare Measurement: A Review of Methodologies and Empirical Findings," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 63(4), pages 881-898, December.
    9. Michael S. Delgado & Nadine McCloud, 2017. "Foreign direct investment and the domestic capital stock: the good–bad role of higher institutional quality," Empirical Economics, Springer, vol. 53(4), pages 1587-1637, December.
    10. Mika Kortelainen & Simo Leppänen, 2013. "Public and private capital productivity in Russia: a non-parametric investigation," Empirical Economics, Springer, vol. 45(1), pages 193-216, August.
    11. Li, Degui & Simar, Léopold & Zelenyuk, Valentin, 2016. "Generalized nonparametric smoothing with mixed discrete and continuous data," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 424-444.
    12. repec:wyi:journl:002112 is not listed on IDEAS
    13. Harry Haupt & Joachim Schnurbus & Rolf Tschernig, 2010. "On nonparametric estimation of a hedonic price function," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(5), pages 894-901.
    14. Simar, Leopold & Zelenyuk, Valentin, 2011. "To Smooth or Not to Smooth? The Case of Discrete Variables in Nonparametric Regressions," LIDAM Discussion Papers ISBA 2011042, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Zongwu Cai & Qi Li, 2013. "Some Recent Develop- ments on Nonparametric Econometrics," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    16. Hans R. A. Koster & Jos Ommeren & Piet Rietveld, 2014. "Agglomeration Economies and Productivity: A Structural Estimation Approach Using Commercial Rents," Economica, London School of Economics and Political Science, vol. 81(321), pages 63-85, January.
    17. Paul Koster & Hans Koster, 2013. "Commuters' Preferences for Fast and Reliable Travel," Tinbergen Institute Discussion Papers 13-075/VIII, Tinbergen Institute, revised 30 Apr 2015.
    18. Koster, Paul R. & Koster, Hans R.A., 2015. "Commuters’ preferences for fast and reliable travel: A semi-parametric estimation approach," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 289-301.
    19. Delgado, Michael S. & McCloud, Nadine & Kumbhakar, Subal C., 2014. "A generalized empirical model of corruption, foreign direct investment, and growth," Journal of Macroeconomics, Elsevier, vol. 42(C), pages 298-316.
    20. Hans R. A. Koster & Jos N. van Ommeren & Piet Rietveld, 2016. "Historic amenities, income and sorting of households," Journal of Economic Geography, Oxford University Press, vol. 16(1), pages 203-236.

    More about this item

    Keywords

    Gradient Estimation; Kernel Smoothing; Least Squares Cross Validation;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:mia:wpaper:2014-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daniela Valdivia (email available below). General contact details of provider: https://edirc.repec.org/data/demiaus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.