IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v27y2018i4d10.1007_s11749-018-0619-x.html
   My bibliography  Save this article

Process modeling for slope and aspect with application to elevation data maps

Author

Listed:
  • Fangpo Wang

    (Adobe Inc.)

  • Anirban Bhattacharya

    (Texas A&M University)

  • Alan E. Gelfand

    (Duke University)

Abstract

Learning about the behavior of land surface gradients and, in particular, slope and aspect over a region from a dataset of levels obtained at a set of (possibly) irregularly spaced locations assumes importance in a variety of applications. A primary example considers digital terrain models for exploring roughness of land surfaces. In a geographic information system software package, gradient information is typically extracted from a digital elevation/terrain model (DEM/DTM), which usually presents the topography of the surface in terms of a set of pre-specified regular grid points, each with an assigned elevation value. That is, the DEM arises from preprocessing of an originally irregularly spaced set of elevation observations. Slope in one dimension is defined as “rise over run”. However, in two dimensions, at a given location, there is a rise over run in every direction. Then, the slope at the location is customarily taken as the maximum slope over all directions. It can be expressed as an angle whose tangent is the ratio of the rise to the run at the maximum. In practice, at each point of the grid, rise/run is obtained through comparison of the elevation at the point to that of a set of neighboring grid points, usually the eight compass neighbors, to find the maximum. Aspect is defined as the angular direction of maximum slope over the compass neighbors. We present a fully model-based approach for inference regarding slope and aspect. In particular, we define process versions of the slope and aspect over a continuous spatial domain. Modeling slopes takes us to directional derivative processes; modeling angles takes us to spatial processes for angular data. Using a stationary Gaussian process model for the elevation data, we obtain distribution theory for slope and associated aspect as well as covariance structure. Hierarchical models emerge; fitting in a Bayesian framework enables attachment of uncertainty. We illustrate with both a simulation example and a real data example using elevations from a collection of monitoring station locations in South Africa.

Suggested Citation

  • Fangpo Wang & Anirban Bhattacharya & Alan E. Gelfand, 2018. "Process modeling for slope and aspect with application to elevation data maps," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 749-772, December.
  • Handle: RePEc:spr:testjl:v:27:y:2018:i:4:d:10.1007_s11749-018-0619-x
    DOI: 10.1007/s11749-018-0619-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-018-0619-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-018-0619-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Banerjee, S. & Gelfand, A. E., 2003. "On smoothness properties of spatial processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 85-100, January.
    2. Banerjee S. & Gelfand A.E. & Sirmans C.F., 2003. "Directional Rates of Change Under Spatial Process Models," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 946-954, January.
    3. Maria Terres & Alan Gelfand, 2015. "Using spatial gradient analysis to clarify species distributions with application to South African protea," Journal of Geographical Systems, Springer, vol. 17(3), pages 227-247, July.
    4. Finley, Andrew O. & Banerjee, Sudipto & Carlin, Bradley P., 2007. "spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 19(i04).
    5. Fangpo Wang & Alan E. Gelfand, 2014. "Modeling Space and Space-Time Directional Data Using Projected Gaussian Processes," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1565-1580, December.
    6. Denwood, Matthew J., 2016. "runjags: An R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i09).
    7. Alan E. Gelfand & Alexandra M. Schmidt & Shanshan Wu & John A. Silander & Andrew Latimer & Anthony G. Rebelo, 2005. "Modelling species diversity through species level hierarchical modelling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 1-20, January.
    8. Majumdar, Anandamayee & Munneke, Henry J. & Gelfand, Alan E. & Banerjee, Sudipto & Sirmans, C.F., 2006. "Gradients in Spatial Response Surfaces With Application to Urban Land Values," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 77-90, January.
    9. Harrison Quick & Sudipto Banerjee & Bradley P. Carlin, 2015. "Bayesian modeling and analysis for gradients in spatiotemporal processes," Biometrics, The International Biometric Society, vol. 71(3), pages 575-584, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Terres & Alan Gelfand, 2015. "Using spatial gradient analysis to clarify species distributions with application to South African protea," Journal of Geographical Systems, Springer, vol. 17(3), pages 227-247, July.
    2. Michele Guindani & Alan E. Gelfand, 2006. "Smoothness Properties and Gradient Analysis Under Spatial Dirichlet Process Models," Methodology and Computing in Applied Probability, Springer, vol. 8(2), pages 159-189, June.
    3. Sudipto Banerjee, 2018. "Comments on: Process modeling for slope and aspect with application to elevation data maps," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 773-775, December.
    4. Merkle, Edgar C. & Steyvers, Mark & Mellers, Barbara & Tetlock, Philip E., 2017. "A neglected dimension of good forecasting judgment: The questions we choose also matter," International Journal of Forecasting, Elsevier, vol. 33(4), pages 817-832.
    5. Johnson, Fred A. & Zimmerman, Guthrie S. & Jensen, Gitte H. & Clausen, Kevin K. & Frederiksen, Morten & Madsen, Jesper, 2020. "Using integrated population models for insights into monitoring programs: An application using pink-footed geese," Ecological Modelling, Elsevier, vol. 415(C).
    6. Dexen DZ. Xi & C.B. Dean & Stephen W. Taylor, 2020. "Modeling the duration and size of extended attack wildfires as dependent outcomes," Environmetrics, John Wiley & Sons, Ltd., vol. 31(5), August.
    7. Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
    8. Lambert, Dayton M. & Florax, Raymond J.G.M. & Cho, Seong-Hoon, 2008. "Bandwidth Selection For Spatial Hac And Other Robust Covariance Estimators," Working papers 44258, Purdue University, Department of Agricultural Economics.
    9. Jan Beran & Britta Steffens & Sucharita Ghosh, 2022. "On nonparametric regression for bivariate circular long-memory time series," Statistical Papers, Springer, vol. 63(1), pages 29-52, February.
    10. Ng'ombe, John, 2019. "Economics of the Greenseeder Hand Planter, Discrete Choice Modeling, and On-Farm Field Experimentation," Thesis Commons jckt7, Center for Open Science.
    11. Laura Melissa Guzman & Elizabeth Elle & Lora A. Morandin & Neil S. Cobb & Paige R. Chesshire & Lindsie M. McCabe & Alice Hughes & Michael Orr & Leithen K. M’Gonigle, 2024. "Impact of pesticide use on wild bee distributions across the United States," Nature Sustainability, Nature, vol. 7(10), pages 1324-1334, October.
    12. Gianfranco Piras & Mauricio Sarrias, 2023. "Heterogeneous spatial models in R: spatial regimes models," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-32, December.
    13. Aghabazaz, Zeynab & Kazemi, Iraj, 2023. "Under-reported time-varying MINAR(1) process for modeling multivariate count series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    14. Guangbao Guo & Guoqi Qian & Lu Lin & Wei Shao, 2021. "Parallel inference for big data with the group Bayesian method," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 225-243, February.
    15. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    16. Tilman M. Davies & Sudipto Banerjee & Adam P. Martin & Rose E. Turnbull, 2022. "A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1014-1043, August.
    17. Liangjun Su & Xi Qu, 2017. "Specification Test for Spatial Autoregressive Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(4), pages 572-584, October.
    18. Xu Gao & Babak Shahbaba & Hernando Ombao, 2018. "Modeling Binary Time Series Using Gaussian Processes with Application to Predicting Sleep States," Journal of Classification, Springer;The Classification Society, vol. 35(3), pages 549-579, October.
    19. Mahdiyeh, Zahra & Kazemi, Iraj, 2019. "An innovative strategy on the construction of multivariate multimodal linear mixed-effects models," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    20. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:27:y:2018:i:4:d:10.1007_s11749-018-0619-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.