IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v84y2021i2d10.1007_s00184-020-00784-0.html
   My bibliography  Save this article

Parallel inference for big data with the group Bayesian method

Author

Listed:
  • Guangbao Guo

    (Shandong University of Technology)

  • Guoqi Qian

    (The University of Melbourne)

  • Lu Lin

    (Shandong University)

  • Wei Shao

    (Qufu Normal University)

Abstract

In recent years, big datasets are often split into several subsets due to the storage requirements. We propose a parallel group Bayesian method for statistical inference in sparse big data. This method improves the existing methods in two aspects: the total datasets are also split into a data subset sequence and the parameter vector is divided into several sub-vectors. Besides, we add a weight sequence to optimize the sub-estimators when each of them has a different covariance matrix. We obtain several theoretical properties of the estimator. The results of numerical simulations show that our method is consistent with the theoretical results and is more effective than classic Markov chain Monte Carlo methods.

Suggested Citation

  • Guangbao Guo & Guoqi Qian & Lu Lin & Wei Shao, 2021. "Parallel inference for big data with the group Bayesian method," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(2), pages 225-243, February.
  • Handle: RePEc:spr:metrik:v:84:y:2021:i:2:d:10.1007_s00184-020-00784-0
    DOI: 10.1007/s00184-020-00784-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-020-00784-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-020-00784-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Faming Liang & Qifan Song & Kai Yu, 2013. "Bayesian Subset Modeling for High-Dimensional Generalized Linear Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(502), pages 589-606, June.
    2. repec:dau:papers:123456789/5671 is not listed on IDEAS
    3. Denwood, Matthew J., 2016. "runjags: An R Package Providing Interface Utilities, Model Templates, Parallel Computing Methods and Additional Distributions for MCMC Models in JAGS," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 71(i09).
    4. Ping Zeng & Xiang Zhou, 2017. "Non-parametric genetic prediction of complex traits with latent Dirichlet process regression models," Nature Communications, Nature, vol. 8(1), pages 1-11, December.
    5. Matias Quiroz & Robert Kohn & Mattias Villani & Minh-Ngoc Tran, 2019. "Speeding Up MCMC by Efficient Data Subsampling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 831-843, April.
    6. Michael I. Jordan & Jason D. Lee & Yun Yang, 2019. "Communication-Efficient Distributed Statistical Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 668-681, April.
    7. Xiaolei Liu & Meng Huang & Bin Fan & Edward S Buckler & Zhiwu Zhang, 2016. "Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient Genome-Wide Association Studies," PLOS Genetics, Public Library of Science, vol. 12(2), pages 1-24, February.
    8. Qifan Song & Faming Liang, 2015. "A split-and-merge Bayesian variable selection approach for ultrahigh dimensional regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(5), pages 947-972, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feifei Wang & Danyang Huang & Tianchen Gao & Shuyuan Wu & Hansheng Wang, 2022. "Sequential one‐step estimator by sub‐sampling for customer churn analysis with massive data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1753-1786, November.
    2. Runmin Shi & Faming Liang & Qifan Song & Ye Luo & Malay Ghosh, 2018. "A Blockwise Consistency Method for Parameter Estimation of Complex Models," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 179-223, December.
    3. Boris Beranger & Huan Lin & Scott Sisson, 2023. "New models for symbolic data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(3), pages 659-699, September.
    4. Niloy Biswas & Anirban Bhattacharya & Pierre E. Jacob & James E. Johndrow, 2022. "Coupling‐based convergence assessment of some Gibbs samplers for high‐dimensional Bayesian regression with shrinkage priors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 973-996, July.
    5. Merkle, Edgar C. & Steyvers, Mark & Mellers, Barbara & Tetlock, Philip E., 2017. "A neglected dimension of good forecasting judgment: The questions we choose also matter," International Journal of Forecasting, Elsevier, vol. 33(4), pages 817-832.
    6. Guangbao Guo & Yue Sun & Xuejun Jiang, 2020. "A partitioned quasi-likelihood for distributed statistical inference," Computational Statistics, Springer, vol. 35(4), pages 1577-1596, December.
    7. Florian Maire & Nial Friel & Pierre ALQUIER, 2017. "Informed Sub-Sampling MCMC: Approximate Bayesian Inference for Large Datasets," Working Papers 2017-40, Center for Research in Economics and Statistics.
    8. Aghabazaz, Zeynab & Kazemi, Iraj, 2023. "Under-reported time-varying MINAR(1) process for modeling multivariate count series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    9. Xingcai Zhou & Zhaoyang Jing & Chao Huang, 2024. "Distributed Bootstrap Simultaneous Inference for High-Dimensional Quantile Regression," Mathematics, MDPI, vol. 12(5), pages 1-54, February.
    10. Song Zhai & Hong Zhang & Devan V. Mehrotra & Judong Shen, 2022. "Pharmacogenomics polygenic risk score for drug response prediction using PRS-PGx methods," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Geyu Zhou & Hongyu Zhao, 2021. "A fast and robust Bayesian nonparametric method for prediction of complex traits using summary statistics," PLOS Genetics, Public Library of Science, vol. 17(7), pages 1-17, July.
    12. Wang, Kangning & Li, Shaomin, 2021. "Robust distributed modal regression for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    13. Benny Ren & Ian Barnett, 2022. "Autoregressive mixture models for clustering time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(6), pages 918-937, November.
    14. Lu Lin & Feng Li, 2023. "Global debiased DC estimations for biased estimators via pro forma regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 726-758, June.
    15. Steven Y. K. Wong & Jennifer S. K. Chan & Lamiae Azizi, 2024. "Quantifying neural network uncertainty under volatility clustering," Papers 2402.14476, arXiv.org.
    16. Prabin Bajgain & James A. Anderson, 2021. "Multi-Allelic Haplotype-Based Association Analysis Identifies Genomic Regions Controlling Domestication Traits in Intermediate Wheatgrass," Agriculture, MDPI, vol. 11(7), pages 1-15, July.
    17. Quiroz, Matias & Villani, Mattias & Kohn, Robert, 2015. "Scalable Mcmc For Large Data Problems Using Data Subsampling And The Difference Estimator," Working Paper Series 306, Sveriges Riksbank (Central Bank of Sweden).
    18. Xubin Lu & Hui Jiang & Abdelaziz Adam Idriss Arbab & Bo Wang & Dingding Liu & Ismail Mohamed Abdalla & Tianle Xu & Yujia Sun & Zongping Liu & Zhangping Yang, 2023. "Investigating Genetic Characteristics of Chinese Holstein Cow’s Milk Somatic Cell Score by Genetic Parameter Estimation and Genome-Wide Association," Agriculture, MDPI, vol. 13(2), pages 1-17, January.
    19. Cao, Wen-Rui & Huang, Qiu-Ru & Zhang, Nan & Liang, Hui-Juan & Xian, Ben-Song & Gan, Xiao-Fang & Xu, Dong Roman & Lai, Ying-Si, 2022. "Mapping the travel modes and acceptable travel time to primary healthcare institutions: A case study in Inner Mongolia Autonomous Region, China," Journal of Transport Geography, Elsevier, vol. 102(C).
    20. Alexina J. Mason & Manuel Gomes & James Carpenter & Richard Grieve, 2021. "Flexible Bayesian longitudinal models for cost‐effectiveness analyses with informative missing data," Health Economics, John Wiley & Sons, Ltd., vol. 30(12), pages 3138-3158, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:84:y:2021:i:2:d:10.1007_s00184-020-00784-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.