spBayes: An R Package for Univariate and Multivariate Hierarchical Point-referenced Spatial Models
Author
Abstract
Suggested Citation
DOI: http://hdl.handle.net/10.18637/jss.v019.i04
Download full text from publisher
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gianfranco Piras & Mauricio Sarrias, 2023. "Heterogeneous spatial models in R: spatial regimes models," Journal of Spatial Econometrics, Springer, vol. 4(1), pages 1-32, December.
- Fangpo Wang & Anirban Bhattacharya & Alan E. Gelfand, 2018. "Process modeling for slope and aspect with application to elevation data maps," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(4), pages 749-772, December.
- Sebastain Awondo & Genti Kostandini, 2022. "Leveraging optimal portfolio of Drought-Tolerant Maize Varieties for weather index insurance and food security," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 47(1), pages 45-65, March.
- Yi Liu & Gavin Shaddick & James V. Zidek, 2017. "Incorporating High-Dimensional Exposure Modelling into Studies of Air Pollution and Health," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 559-581, December.
- Tilman M. Davies & Sudipto Banerjee & Adam P. Martin & Rose E. Turnbull, 2022. "A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1014-1043, August.
- K. Shuvo Bakar, 2020. "Interpolation of daily rainfall data using censored Bayesian spatially varying model," Computational Statistics, Springer, vol. 35(1), pages 135-152, March.
- Pei Zhao & Chao Wang & Shuhong Sun & Xi Wang & William E. Balch, 2024. "Tracing genetic diversity captures the molecular basis of misfolding disease," Nature Communications, Nature, vol. 15(1), pages 1-22, December.
- Waley W. J. Liang & Herbert K. H. Lee, 2019. "Bayesian nonstationary Gaussian process models via treed process convolutions," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 797-818, September.
- Maitreyee Bose & James S. Hodges & Sudipto Banerjee, 2018. "Toward a diagnostic toolkit for linear models with Gaussian‐process distributed random effects," Biometrics, The International Biometric Society, vol. 74(3), pages 863-873, September.
- Finley, Andrew O. & Banerjee, Sudipto & Gelfand, Alan E., 2015. "spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i13).
- Maria Terres & Alan Gelfand, 2015. "Using spatial gradient analysis to clarify species distributions with application to South African protea," Journal of Geographical Systems, Springer, vol. 17(3), pages 227-247, July.
- Xiaotian Zheng & Athanasios Kottas & Bruno Sansó, 2023. "Bayesian geostatistical modeling for discrete‐valued processes," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
- Junbo Zhang & Daoji Li & Yingzhi Xia & Qifeng Liao, 2022. "Bayesian Aerosol Retrieval-Based PM 2.5 Estimation through Hierarchical Gaussian Process Models," Mathematics, MDPI, vol. 10(16), pages 1-13, August.
- Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
- Lu Zhang & Sudipto Banerjee, 2022. "Spatial factor modeling: A Bayesian matrix‐normal approach for misaligned data," Biometrics, The International Biometric Society, vol. 78(2), pages 560-573, June.
- Pebesma, Edzer & Bivand, Roger & Ribeiro, Paulo Justiniano, 2015. "Software for Spatial Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i01).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:019:i04. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.