An improved and efficient estimation method for varying-coefficient model with missing covariates
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spl.2015.09.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhao, Zhibiao & Xiao, Zhijie, 2014. "Efficient Regressions Via Optimally Combining Quantile Information," Econometric Theory, Cambridge University Press, vol. 30(6), pages 1272-1314, December.
- Ying Wei & Yanyuan Ma & Raymond J. Carroll, 2012. "Multiple imputation in quantile regression," Biometrika, Biometrika Trust, vol. 99(2), pages 423-438.
- Linjun Tang & Zhangong Zhou, 2015. "Weighted local linear CQR for varying-coefficient models with missing covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 583-604, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jing Sun, 2020. "An improvement on the efficiency of complete-case-analysis with nonignorable missing covariate data," Computational Statistics, Springer, vol. 35(4), pages 1621-1636, December.
- ChunJing Li & Yun Li & Xue Ding & XiaoGang Dong, 2020. "DGQR estimation for interval censored quantile regression with varying-coefficient models," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-17, November.
- Zhangong Zhou & Linjun Tang, 2019. "Testing for parametric component of partially linear models with missing covariates," Statistical Papers, Springer, vol. 60(3), pages 747-760, June.
- Shen, Yu & Liang, Han-Ying, 2018. "Quantile regression for partially linear varying-coefficient model with censoring indicators missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 1-18.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Bindele, Huybrechts F., 2018. "Covariates missing at random under signed-rank inference," Econometrics and Statistics, Elsevier, vol. 8(C), pages 78-93.
- Jing Sun, 2020. "An improvement on the efficiency of complete-case-analysis with nonignorable missing covariate data," Computational Statistics, Springer, vol. 35(4), pages 1621-1636, December.
- Yanlin Tang & Xinyuan Song & Zhongyi Zhu, 2015. "Variable selection via composite quantile regression with dependent errors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 69(1), pages 1-20, February.
- Kangning Wang & Lu Lin, 2017. "Robust and efficient direction identification for groupwise additive multiple-index models and its applications," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 22-45, March.
- WenWu Wang & Ping Yu, 2023. "Nonequivalence of two least-absolute-deviation estimators for mediation effects," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 370-387, March.
- Yingying Hu & Huixia Judy Wang & Xuming He & Jianhua Guo, 2021. "Bayesian joint-quantile regression," Computational Statistics, Springer, vol. 36(3), pages 2033-2053, September.
- Feiyu Jiang & Zifeng Zhao & Xiaofeng Shao, 2022. "Jiang, Zhao and Shao's reply to the Discussion of ‘The First Discussion Meeting on Statistical Aspects of the Covid‐19 Pandemic’," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1849-1854, October.
- Harding, Matthew & Lamarche, Carlos, 2019.
"A panel quantile approach to attrition bias in Big Data: Evidence from a randomized experiment,"
Journal of Econometrics, Elsevier, vol. 211(1), pages 61-82.
- Matthew Harding & Carlos Lamarche, 2018. "A Panel Quantile Approach to Attrition Bias in Big Data: Evidence from a Randomized Experiment," Papers 1808.03364, arXiv.org.
- Xiao Huang & Zhaoguo Zhan, 2022.
"Local Composite Quantile Regression for Regression Discontinuity,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1863-1875, October.
- Xiao Huang & Zhaoguo Zhan, 2020. "Local Composite Quantile Regression for Regression Discontinuity," Papers 2009.03716, arXiv.org, revised Oct 2021.
- Rong Jiang & Mengxian Sun, 2022. "Single-index composite quantile regression for ultra-high-dimensional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(2), pages 443-460, June.
- Wang, Chuan-Sheng & Zhao, Zhibiao, 2016. "Conditional Value-at-Risk: Semiparametric estimation and inference," Journal of Econometrics, Elsevier, vol. 195(1), pages 86-103.
- Hubner, Stefan, 2016. "Topics in nonparametric identification and estimation," Other publications TiSEM 08fce56b-3193-46e0-871b-0, Tilburg University, School of Economics and Management.
- Puying Zhao & Hui Zhao & Niansheng Tang & Zhaohai Li, 2017. "Weighted composite quantile regression analysis for nonignorable missing data using nonresponse instrument," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(2), pages 189-212, April.
- Tonghui Yu & Liming Xiang & Huixia Judy Wang, 2021. "Quantile regression for survival data with covariates subject to detection limits," Biometrics, The International Biometric Society, vol. 77(2), pages 610-621, June.
- Xuerong Chen & Alan T. K. Wan & Yong Zhou, 2015. "Efficient Quantile Regression Analysis With Missing Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(510), pages 723-741, June.
- Seonjin Kim, 2015. "Hypothesis Testing For Arch Models: A Multiple Quantile Regressions Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(1), pages 26-38, January.
- Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.
- Hasan A. Fallahgoul & David Veredas & Frank J. Fabozzi, 2019. "Quantile-Based Inference for Tempered Stable Distributions," Computational Economics, Springer;Society for Computational Economics, vol. 53(1), pages 51-83, January.
- Erik Figueiredo & Luiz Renato Lima, 2020. "Do economic integration agreements affect trade predictability? A group effect analysis," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 637-664, May.
- Sherwood, Ben, 2016. "Variable selection for additive partial linear quantile regression with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 206-223.
More about this item
Keywords
Weighted quantile average estimation; Varying-coefficient model; Missing mechanism; Inverse probability weighting;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:107:y:2015:i:c:p:296-303. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.