IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0240046.html
   My bibliography  Save this article

DGQR estimation for interval censored quantile regression with varying-coefficient models

Author

Listed:
  • ChunJing Li
  • Yun Li
  • Xue Ding
  • XiaoGang Dong

Abstract

This paper propose a direct generalization quantile regression estimation method (DGQR estimation) for quantile regression with varying-coefficient models with interval censored data, which is a direct generalization for complete observed data. The consistency and asymptotic normality properties of the estimators are obtained. The proposed method has the advantage that does not require the censoring vectors to be identically distributed. The effectiveness of the method is verified by some simulation studies and a real data example.

Suggested Citation

  • ChunJing Li & Yun Li & Xue Ding & XiaoGang Dong, 2020. "DGQR estimation for interval censored quantile regression with varying-coefficient models," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-17, November.
  • Handle: RePEc:plo:pone00:0240046
    DOI: 10.1371/journal.pone.0240046
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0240046
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0240046&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0240046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiuqing Zhou & Yanqin Feng & Xiuli Du, 2017. "Quantile regression for interval censored data," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(8), pages 3848-3863, April.
    2. Xie, Shangyu & Wan, Alan T.K. & Zhou, Yong, 2015. "Quantile regression methods with varying-coefficient models for censored data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 154-172.
    3. Linjun Tang & Zhangong Zhou, 2015. "Weighted local linear CQR for varying-coefficient models with missing covariates," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 583-604, September.
    4. Cai, Zongwu & Xu, Xiaoping, 2009. "Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 371-383.
    5. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    6. Khan, Shakeeb & Powell, James L., 2001. "Two-step estimation of semiparametric censored regression models," Journal of Econometrics, Elsevier, vol. 103(1-2), pages 73-110, July.
    7. Sun, Jing & Sun, Qihang, 2015. "An improved and efficient estimation method for varying-coefficient model with missing covariates," Statistics & Probability Letters, Elsevier, vol. 107(C), pages 296-303.
    8. Jianhua Z. Huang, 2002. "Varying-coefficient models and basis function approximations for the analysis of repeated measurements," Biometrika, Biometrika Trust, vol. 89(1), pages 111-128, March.
    9. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    10. Shuang Ji & Limin Peng & Yu Cheng & HuiChuan Lai, 2012. "Quantile Regression for Doubly Censored Data," Biometrics, The International Biometric Society, vol. 68(1), pages 101-112, March.
    11. Lin, Guixian & He, Xuming & Portnoy, Stephen, 2012. "Quantile regression with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 797-812.
    12. Kenneth Y. Chay & James L. Powell, 2001. "Semiparametric Censored Regression Models," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 29-42, Fall.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Merlo, Luca & Petrella, Lea & Salvati, Nicola & Tzavidis, Nikos, 2022. "Marginal M-quantile regression for multivariate dependent data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu Li & Ruiting Hao & Xiaorong Yang, 2024. "Data Augmentation Based Quantile Regression Estimation for Censored Partially Linear Additive Model," Computational Economics, Springer;Society for Computational Economics, vol. 64(2), pages 1083-1112, August.
    2. Shen, Yu & Liang, Han-Ying, 2018. "Quantile regression for partially linear varying-coefficient model with censoring indicators missing at random," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 1-18.
    3. Maria Marino & Alessio Farcomeni, 2015. "Linear quantile regression models for longitudinal experiments: an overview," METRON, Springer;Sapienza Università di Roma, vol. 73(2), pages 229-247, August.
    4. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Robust Estimation of Wage Dispersion with Censored Data: An Application to Occupational Earnings Risk and Risk Attitudes," De Economist, Springer, vol. 168(4), pages 519-540, December.
    5. Subramanian, Sundarraman, 2021. "Median regression from twice censored data," Statistics & Probability Letters, Elsevier, vol. 168(C).
    6. Lin, Guixian & He, Xuming & Portnoy, Stephen, 2012. "Quantile regression with doubly censored data," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 797-812.
    7. Zhao, Weihua & Jiang, Xuejun & Lian, Heng, 2018. "A principal varying-coefficient model for quantile regression: Joint variable selection and dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 127(C), pages 269-280.
    8. Daniel Pollmann & Thomas Dohmen & Franz Palm, 2020. "Dispersion estimation; Earnings risk; Censoring; Quantile regression; Occupational choice; Sorting; Risk preferences; SOEP; IABS," ECONtribute Discussion Papers Series 028, University of Bonn and University of Cologne, Germany.
    9. Lian, Heng, 2015. "Quantile regression for dynamic partially linear varying coefficient time series models," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 49-66.
    10. Jun Jin & Tiefeng Ma & Jiajia Dai & Shuangzhe Liu, 2021. "Penalized weighted composite quantile regression for partially linear varying coefficient models with missing covariates," Computational Statistics, Springer, vol. 36(1), pages 541-575, March.
    11. Zhao, Weihua & Lian, Heng, 2017. "Quantile index coefficient model with variable selection," Journal of Multivariate Analysis, Elsevier, vol. 154(C), pages 40-58.
    12. Lili Yue & Gaorong Li & Heng Lian, 2019. "Identification and estimation in quantile varying-coefficient models with unknown link function," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(4), pages 1251-1275, December.
    13. Gareth W. Peters, 2018. "General Quantile Time Series Regressions for Applications in Population Demographics," Risks, MDPI, vol. 6(3), pages 1-47, September.
    14. Chen, Songnian, 2018. "Sequential estimation of censored quantile regression models," Journal of Econometrics, Elsevier, vol. 207(1), pages 30-52.
    15. Jooyong Shim & Changha Hwang & Kyungha Seok, 2016. "Support vector quantile regression with varying coefficients," Computational Statistics, Springer, vol. 31(3), pages 1015-1030, September.
    16. Francesco Bravo, 2020. "Semiparametric quantile regression with random censoring," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(1), pages 265-295, February.
    17. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    18. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    19. Fernando Antonio Slaibe Postali, 2016. "Oil windfalls and X-inefficiency: evidence from Brazil," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 43(5), pages 699-718, October.
    20. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0240046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.