IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v22y2013i4p628-646.html
   My bibliography  Save this article

Eliciting Dirichlet and Connor–Mosimann prior distributions for multinomial models

Author

Listed:
  • Fadlalla Elfadaly
  • Paul Garthwaite

Abstract

This paper addresses the task of eliciting an informative prior distribution for multinomial models. We first introduce a method of eliciting univariate beta distributions for the probability of each category, conditional on the probabilities of other categories. Two different forms of multivariate prior are derived from the elicited beta distributions. First, we determine the hyperparameters of a Dirichlet distribution by reconciling the assessed parameters of the univariate beta conditional distributions. Although the Dirichlet distribution is the standard conjugate prior distribution for multinomial models, it is not flexible enough to represent a broad range of prior information. Second, we use the beta distributions to determine the parameters of a Connor–Mosimann distribution, which is a generalization of a Dirichlet distribution and is also a conjugate prior for multinomial models. It has a larger number of parameters than the standard Dirichlet distribution and hence a more flexible structure. The elicitation methods are designed to be used with the aid of interactive graphical user-friendly software. Copyright Sociedad de Estadística e Investigación Operativa 2013

Suggested Citation

  • Fadlalla Elfadaly & Paul Garthwaite, 2013. "Eliciting Dirichlet and Connor–Mosimann prior distributions for multinomial models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 628-646, November.
  • Handle: RePEc:spr:testjl:v:22:y:2013:i:4:p:628-646
    DOI: 10.1007/s11749-013-0336-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-013-0336-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-013-0336-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hankin, Robin K. S., 2010. "A Generalization of the Dirichlet Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i11).
    2. Bunn, Derek W, 1978. "Estimation of a Dirichlet prior distribution," Omega, Elsevier, vol. 6(4), pages 371-373.
    3. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    2. Berthold-Georg Englert & Michael Evans & Gun Ho Jang & Hui Khoon Ng & David Nott & Yi-Lin Seah, 2021. "Checking for model failure and for prior-data conflict with the constrained multinomial model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1141-1168, November.
    3. Fadlalla G. Elfadaly & Paul H. Garthwaite, 2020. "On quantifying expert opinion about multinomial models that contain covariates," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 959-981, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maarten Ijzerman & Lotte Steuten, 2011. "Early assessment of medical technologies to inform product development and market access," Applied Health Economics and Health Policy, Springer, vol. 9(5), pages 331-347, September.
    2. Claire Copeland & Britta Turner & Gareth Powells & Kevin Wilson, 2022. "In Search of Complementarity: Insights from an Exercise in Quantifying Qualitative Energy Futures," Energies, MDPI, vol. 15(15), pages 1-21, July.
    3. Robert Stewart & Marie Urban & Samantha Duchscherer & Jason Kaufman & April Morton & Gautam Thakur & Jesse Piburn & Jessica Moehl, 2016. "A Bayesian machine learning model for estimating building occupancy from open source data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1929-1956, April.
    4. Nicholas M. Kiefer, 2011. "Default estimation, correlated defaults, and expert information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(2), pages 173-192, March.
    5. Ross Gruetzemacher & Kang Bok Lee & David Paradice, 2024. "Calibration training for improving probabilistic judgments using an interactive app," Futures & Foresight Science, John Wiley & Sons, vol. 6(2), June.
    6. Miller, Joshua Benjamin & Sanjurjo, Adam, 2018. "How Experience Confirms the Gambler's Fallacy when Sample Size is Neglected," OSF Preprints m5xsk, Center for Open Science.
    7. Dai, Min & Jia, Yanwei & Kou, Steven, 2021. "The wisdom of the crowd and prediction markets," Journal of Econometrics, Elsevier, vol. 222(1), pages 561-578.
    8. A Zuashkiani & D Banjevic & A K S Jardine, 2009. "Estimating parameters of proportional hazards model based on expert knowledge and statistical data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1621-1636, December.
    9. K J Wilson & M Farrow, 2010. "Bayes linear kinematics in the analysis of failure rates and failure time distributions," Journal of Risk and Reliability, , vol. 224(4), pages 309-321, December.
    10. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    11. A. El-Bassiouny & M. Jones, 2009. "A bivariate F distribution with marginals on arbitrary numerator and denominator degrees of freedom, and related bivariate beta and t distributions," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 18(4), pages 465-481, November.
    12. Nicholas M. Kiefer, 2017. "Correlated defaults, temporal correlation, expert information and predictability of default rates," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 699-712, October.
    13. Azamat Abdymomunov & Sharon Blei & Bakhodir Ergashev, 2015. "Integrating Stress Scenarios into Risk Quantification Models," Journal of Financial Services Research, Springer;Western Finance Association, vol. 47(1), pages 57-79, February.
    14. Clancy, Damian & Tanner, Jason E. & McWilliam, Stephen & Spencer, Matthew, 2010. "Quantifying parameter uncertainty in a coral reef model using Metropolis-Coupled Markov Chain Monte Carlo," Ecological Modelling, Elsevier, vol. 221(10), pages 1337-1347.
    15. Alfredo Bateman y Javier E. Martinez & Javier Esteban Martinez, 2010. "Cuaderno 4: Análisis de las fuentes de oferta y demanda en el mercado de divisas," Cuadernos de Desarrollo Económico 7586, Secretaría Distrital de Desarrollo Económico.
    16. Nicholas Longford, 2014. "Policy-related small-area estimation," Economics Working Papers 1427, Department of Economics and Business, Universitat Pompeu Fabra.
    17. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    18. Meng, Xiaochun & Taylor, James W., 2022. "Comparing probabilistic forecasts of the daily minimum and maximum temperature," International Journal of Forecasting, Elsevier, vol. 38(1), pages 267-281.
    19. Constantinou Anthony Costa & Fenton Norman Elliott, 2012. "Solving the Problem of Inadequate Scoring Rules for Assessing Probabilistic Football Forecast Models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-14, March.
    20. Jacobi Liana & Kwok Chun Fung & Ramírez-Hassan Andrés & Nghiem Nhung, 2024. "Posterior Manifolds over Prior Parameter Regions: Beyond Pointwise Sensitivity Assessments for Posterior Statistics from MCMC Inference," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 28(2), pages 403-434, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:22:y:2013:i:4:p:628-646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.