IDEAS home Printed from https://ideas.repec.org/a/spr/metrik/v84y2021i8d10.1007_s00184-021-00811-8.html
   My bibliography  Save this article

Checking for model failure and for prior-data conflict with the constrained multinomial model

Author

Listed:
  • Berthold-Georg Englert

    (National University of Singapore and MajuLab)

  • Michael Evans

    (University of Toronto)

  • Gun Ho Jang

    (Ontario Institute for Cancer Research)

  • Hui Khoon Ng

    (MajuLab)

  • David Nott

    (National Unversity of Singapore)

  • Yi-Lin Seah

    (Centre for Quantum Technologies)

Abstract

Multinomial models can be difficult to use when constraints are placed on the probabilities. An exact model checking procedure for such models is developed based on a uniform prior on the full multinomial model. For inference, a nonuniform prior can be used and a consistency theorem is proved concerning a check for prior-data conflict with the chosen prior. Applications are presented and a new elicitation methodology is developed for multinomial models with ordered probabilities.

Suggested Citation

  • Berthold-Georg Englert & Michael Evans & Gun Ho Jang & Hui Khoon Ng & David Nott & Yi-Lin Seah, 2021. "Checking for model failure and for prior-data conflict with the constrained multinomial model," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 84(8), pages 1141-1168, November.
  • Handle: RePEc:spr:metrik:v:84:y:2021:i:8:d:10.1007_s00184-021-00811-8
    DOI: 10.1007/s00184-021-00811-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00184-021-00811-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00184-021-00811-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicolas Bousquet, 2008. "Diagnostics of prior-data agreement in applied Bayesian analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 1011-1029.
    2. Hjort, Nils Lid & Dahl, Fredrik A. & Steinbakk, Gunnhildur Hognadottir, 2006. "Post-Processing Posterior Predictive p Values," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1157-1174, September.
    3. Iliopoulos, G. & Kateri, M. & Ntzoufras, I., 2007. "Bayesian estimation of unrestricted and order-restricted association models for a two-way contingency table," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4643-4655, May.
    4. Demirhan, Haydar, 2013. "Bayesian estimation of order-restricted and unrestricted association models," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 109-126.
    5. Fadlalla Elfadaly & Paul Garthwaite, 2013. "Eliciting Dirichlet and Connor–Mosimann prior distributions for multinomial models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 628-646, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mani Suleiman & Haydar Demirhan & Leanne Boyd & Federico Girosi & Vural Aksakalli, 2019. "Bayesian logistic regression approaches to predict incorrect DRG assignment," Health Care Management Science, Springer, vol. 22(2), pages 364-375, June.
    2. Zhao, Guimei & Xu, Xingzhong, 2014. "The one-sided posterior predictive p-value for Fieller’s problem," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 57-62.
    3. Demirhan, Haydar, 2013. "Bayesian estimation of order-restricted and unrestricted association models," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 109-126.
    4. Haydar Demirhan & Kamil Demirhan, 2016. "A Bayesian approach for the estimation of probability distributions under finite sample space," Statistical Papers, Springer, vol. 57(3), pages 589-603, September.
    5. Evelien Schat & Rens van de Schoot & Wouter M Kouw & Duco Veen & Adriënne M Mendrik, 2020. "The data representativeness criterion: Predicting the performance of supervised classification based on data set similarity," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-16, August.
    6. C. Jessica E. Metcalf & David A. Stephens & Mark Rees & Svata M. Louda & Kathleen H. Keeler, 2009. "Using Bayesian inference to understand the allocation of resources between sexual and asexual reproduction," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(2), pages 143-170, May.
    7. Rufo, M.J. & Martín, J. & Pérez, C.J., 2009. "Inference on exponential families with mixture of prior distributions," Computational Statistics & Data Analysis, Elsevier, vol. 53(9), pages 3271-3280, July.
    8. Remy, Emmanuel & Corset, Franck & Despréaux, Stéphane & Doyen, Laurent & Gaudoin, Olivier, 2013. "An example of integrated approach to technical and economic optimization of maintenance," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 8-19.
    9. Anders Løland & Ragnar Bang Huseby & Nils Lid Hjort & Arnoldo Frigessi, 2013. "Statistical Corrections of Invalid Correlation Matrices," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 807-824, December.
    10. Carolyn Anderson, 2013. "Multidimensional Item Response Theory Models with Collateral Information as Poisson Regression Models," Journal of Classification, Springer;The Classification Society, vol. 30(2), pages 276-303, July.
    11. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    12. Oh, Man-Suk, 2014. "Bayesian test on equality of score parameters in the order restricted RC association model," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 147-157.
    13. Dahl, Fredrik Andreas, 2006. "On the conservativeness of posterior predictive p-values," Statistics & Probability Letters, Elsevier, vol. 76(11), pages 1170-1174, June.
    14. Ying Yuan & Valen E. Johnson, 2012. "Goodness-of-Fit Diagnostics for Bayesian Hierarchical Models," Biometrics, The International Biometric Society, vol. 68(1), pages 156-164, March.
    15. Rufo, M.J. & Pérez, C.J. & Martín, J., 2010. "Merging experts' opinions: A Bayesian hierarchical model with mixture of prior distributions," European Journal of Operational Research, Elsevier, vol. 207(1), pages 284-289, November.
    16. Salvador, B. & Fernandez, M.A. & Martin, I. & Rueda, C., 2008. "Robustness of classification rules that incorporate additional information," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2489-2495, January.
    17. Fadlalla G. Elfadaly & Paul H. Garthwaite, 2020. "On quantifying expert opinion about multinomial models that contain covariates," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 959-981, June.
    18. Stefano Cabras & María Eugenia Castellanos & Oliver Ratmann, 2021. "Goodness of fit for models with intractable likelihood," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 713-736, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metrik:v:84:y:2021:i:8:d:10.1007_s00184-021-00811-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.