IDEAS home Printed from https://ideas.repec.org/a/sae/risrel/v224y2010i4p309-321.html
   My bibliography  Save this article

Bayes linear kinematics in the analysis of failure rates and failure time distributions

Author

Listed:
  • K J Wilson
  • M Farrow

Abstract

Collections of related Poisson or binomial counts arise, for example, from a number of different failures in similar machines or neighbouring time periods. A conventional Bayesian analysis requires a rather indirect prior specification and intensive numerical methods for posterior evaluations. An alternative approach using Bayes linear kinematics in which simple conjugate specifications for individual counts are linked through a Bayes linear belief structure is presented. Intensive numerical methods are not required. The use of transformations of the binomial and Poisson parameters is proposed. The approach is illustrated in two examples, one involving a Poisson count of failures, the other involving a binomial count in an analysis of failure times.

Suggested Citation

  • K J Wilson & M Farrow, 2010. "Bayes linear kinematics in the analysis of failure rates and failure time distributions," Journal of Risk and Reliability, , vol. 224(4), pages 309-321, December.
  • Handle: RePEc:sae:risrel:v:224:y:2010:i:4:p:309-321
    DOI: 10.1243/1748006XJRR293
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1243/1748006XJRR293
    Download Restriction: no

    File URL: https://libkey.io/10.1243/1748006XJRR293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michael Goldstein, 2004. "Bayes linear kinematics and Bayes linear Bayes graphical models," Biometrika, Biometrika Trust, vol. 91(2), pages 425-446, June.
    2. Dani Gamerman, 1991. "Dynamic Bayesian Models for Survival Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(1), pages 63-79, March.
    3. Allan H. Murphy & Robert L. Winkler, 1977. "Reliability of Subjective Probability Forecasts of Precipitation and Temperature," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(1), pages 41-47, March.
    4. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    5. P. Dellaportas & A. F. M. Smith, 1993. "Bayesian Inference for Generalized Linear and Proportional Hazards Models Via Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 42(3), pages 443-459, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M Revie & T Bedford & L Walls, 2010. "Evaluation of elicitation methods to quantify Bayes linear models," Journal of Risk and Reliability, , vol. 224(4), pages 322-332, December.
    2. Mary Kynn, 2008. "The ‘heuristics and biases’ bias in expert elicitation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 239-264, January.
    3. Victor Richmond R. Jose & Robert L. Winkler, 2009. "Evaluating Quantile Assessments," Operations Research, INFORMS, vol. 57(5), pages 1287-1297, October.
    4. Se Yoon Lee, 2022. "Bayesian Nonlinear Models for Repeated Measurement Data: An Overview, Implementation, and Applications," Mathematics, MDPI, vol. 10(6), pages 1-51, March.
    5. Claire Copeland & Britta Turner & Gareth Powells & Kevin Wilson, 2022. "In Search of Complementarity: Insights from an Exercise in Quantifying Qualitative Energy Futures," Energies, MDPI, vol. 15(15), pages 1-21, July.
    6. McKenzie, Craig R.M. & Liersch, Michael J. & Yaniv, Ilan, 2008. "Overconfidence in interval estimates: What does expertise buy you?," Organizational Behavior and Human Decision Processes, Elsevier, vol. 107(2), pages 179-191, November.
    7. Miller, Joshua Benjamin & Sanjurjo, Adam, 2018. "How Experience Confirms the Gambler's Fallacy when Sample Size is Neglected," OSF Preprints m5xsk, Center for Open Science.
    8. Dai, Min & Jia, Yanwei & Kou, Steven, 2021. "The wisdom of the crowd and prediction markets," Journal of Econometrics, Elsevier, vol. 222(1), pages 561-578.
    9. A Zuashkiani & D Banjevic & A K S Jardine, 2009. "Estimating parameters of proportional hazards model based on expert knowledge and statistical data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1621-1636, December.
    10. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    11. Cizek, P. & Lei, J. & Ligthart, J.E., 2012. "The Determinants of VAT Introduction : A Spatial Duration Analysis," Other publications TiSEM 835efbcb-4537-4dab-aaa3-c, Tilburg University, School of Economics and Management.
    12. Ian W. McKeague & Mourad Tighiouart, 2000. "Bayesian Estimators for Conditional Hazard Functions," Biometrics, The International Biometric Society, vol. 56(4), pages 1007-1015, December.
    13. Astebro, Thomas B. & Fossen, Frank M. & Gutierrez, Cédric, 2024. "Entrepreneurs: Clueless, Biased, Poor Heuristics, or Bayesian Machines?," IZA Discussion Papers 17231, Institute of Labor Economics (IZA).
    14. Wilson, Kevin J., 2017. "An investigation of dependence in expert judgement studies with multiple experts," International Journal of Forecasting, Elsevier, vol. 33(1), pages 325-336.
    15. Meng, Xiaochun & Taylor, James W., 2022. "Comparing probabilistic forecasts of the daily minimum and maximum temperature," International Journal of Forecasting, Elsevier, vol. 38(1), pages 267-281.
    16. Constantinou Anthony Costa & Fenton Norman Elliott, 2012. "Solving the Problem of Inadequate Scoring Rules for Assessing Probabilistic Football Forecast Models," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(1), pages 1-14, March.
    17. Durbach, Ian N. & Stewart, Theodor J., 2012. "A comparison of simplified value function approaches for treating uncertainty in multi-criteria decision analysis," Omega, Elsevier, vol. 40(4), pages 456-464.
    18. Johan René van Dorp & Salvador Cruz Rambaud & José García Pérez & Rafael Herrerías Pleguezuelo, 2007. "An Elicitation Procedure for the Generalized Trapezoidal Distribution with a Uniform Central Stage," Decision Analysis, INFORMS, vol. 4(3), pages 156-166, September.
    19. Anna Chrysafi & Vili Virkki & Mika Jalava & Vilma Sandström & Johannes Piipponen & Miina Porkka & Steven J. Lade & Kelsey Mere & Lan Wang-Erlandsson & Laura Scherer & Lauren S. Andersen & Elena Bennet, 2022. "Quantifying Earth system interactions for sustainable food production via expert elicitation," Nature Sustainability, Nature, vol. 5(10), pages 830-842, October.
    20. Goldstein, Michael & Bedford, Tim, 2007. "The Bayes linear approach to inference and decision-making for a reliability programme," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1344-1352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:risrel:v:224:y:2010:i:4:p:309-321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.