IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v36y2017i6-9p699-712.html
   My bibliography  Save this article

Correlated defaults, temporal correlation, expert information and predictability of default rates

Author

Listed:
  • Nicholas M. Kiefer

Abstract

Dependence among defaults both across assets and over time is an important characteristic of financial risk. A Bayesian approach to default rate estimation is proposed and illustrated using prior distributions assessed from an experienced industry expert. Two extensions of the binomial model are proposed. The first allows correlated defaults yet remains consistent with Basel II’s asymptotic single-factor model. The second adds temporal correlation in default rates through autocorrelation in the systemic factor. Implications for the predictability of default rates are considered. The single-factor model generates more forecast uncertainty than does the parameter uncertainty. A robustness exercise illustrates that the correlation indicated by the data is much smaller than that specified in the Basel II regulations.

Suggested Citation

  • Nicholas M. Kiefer, 2017. "Correlated defaults, temporal correlation, expert information and predictability of default rates," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 699-712, October.
  • Handle: RePEc:taf:emetrv:v:36:y:2017:i:6-9:p:699-712
    DOI: 10.1080/07474938.2017.1307547
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/07474938.2017.1307547
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/07474938.2017.1307547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nickell, Pamela & Perraudin, William & Varotto, Simone, 2000. "Stability of rating transitions," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 203-227, January.
    2. Gordy, Michael B., 2003. "A risk-factor model foundation for ratings-based bank capital rules," Journal of Financial Intermediation, Elsevier, vol. 12(3), pages 199-232, July.
    3. Sanjiv R. Das & Darrell Duffie & Nikunj Kapadia & Leandro Saita, 2007. "Common Failings: How Corporate Defaults Are Correlated," Journal of Finance, American Finance Association, vol. 62(1), pages 93-117, February.
    4. Hanson, Samuel & Schuermann, Til, 2006. "Confidence intervals for probabilities of default," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2281-2301, August.
    5. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    6. Sergei A. Davydenko & Julian R. Franks, 2008. "Do Bankruptcy Codes Matter? A Study of Defaults in France, Germany, and the U.K," Journal of Finance, American Finance Association, vol. 63(2), pages 565-608, April.
    7. Nicholas M. Kiefer, 2011. "Default estimation, correlated defaults, and expert information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(2), pages 173-192, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacobs, Michael & Kiefer, Nicholas M., 2010. "The Bayesian Approach to Default Risk: A Guide," Working Papers 10-01, Cornell University, Center for Analytic Economics.
    2. Nicholas M. Kiefer, 2011. "Default estimation, correlated defaults, and expert information," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(2), pages 173-192, March.
    3. Oliver Blümke, 2020. "Estimating the probability of default for no‐default and low‐default portfolios," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 69(1), pages 89-107, January.
    4. Andreas Blöchlinger & Markus Leippold, 2011. "A New Goodness-of-Fit Test for Event Forecasting and Its Application to Credit Defaults," Management Science, INFORMS, vol. 57(3), pages 487-505, March.
    5. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Rating Migration Analysis on the Business Cycle," IJFS, MDPI, vol. 2(1), pages 1-22, March.
    6. Yi-Ping Chang & Chih-Tun Yu, 2014. "Bayesian confidence intervals for probability of default and asset correlation of portfolio credit risk," Computational Statistics, Springer, vol. 29(1), pages 331-361, February.
    7. Stefanescu, Catalina & Tunaru, Radu & Turnbull, Stuart, 2009. "The credit rating process and estimation of transition probabilities: A Bayesian approach," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 216-234, March.
    8. Hanson, Samuel G. & Pesaran, M. Hashem & Schuermann, Til, 2008. "Firm heterogeneity and credit risk diversification," Journal of Empirical Finance, Elsevier, vol. 15(4), pages 583-612, September.
    9. Oliver Blümke, 2022. "Multiperiod default probability forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 677-696, July.
    10. Bandyopadhyay, Arindam, 2010. "Understanding the Effect of Concentration Risk in the Banks’ Credit Portfolio: Indian Cases," MPRA Paper 24822, University Library of Munich, Germany.
    11. Matteo Accornero & Giuseppe Cascarino & Roberto Felici & Fabio Parlapiano & Alberto Maria Sorrentino, 2018. "Credit risk in banks’ exposures to non‐financial firms," European Financial Management, European Financial Management Association, vol. 24(5), pages 775-791, November.
    12. Jobst, Rainer & Kellner, Ralf & Rösch, Daniel, 2020. "Bayesian loss given default estimation for European sovereign bonds," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1073-1091.
    13. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, January.
    14. Yang, Bill Huajian, 2014. "Modeling Systematic Risk and Point-in-Time Probability of Default under the Vasicek Asymptotic Single Risk Factor Model Framework," MPRA Paper 59025, University Library of Munich, Germany.
    15. Tarashev, Nikola, 2010. "Measuring portfolio credit risk correctly: Why parameter uncertainty matters," Journal of Banking & Finance, Elsevier, vol. 34(9), pages 2065-2076, September.
    16. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    17. Smith, Brent C, 2011. "Stability in consumer credit scores: Level and direction of FICO score drift as a precursor to mortgage default and prepayment," Journal of Housing Economics, Elsevier, vol. 20(4), pages 285-298.
    18. , L., 2013. "Fragility of reputation and clustering of risk-taking," Theoretical Economics, Econometric Society, vol. 8(3), September.
    19. Steffi Höse & Stefan Huschens, 2011. "Confidence Intervals for Asset Correlations in the Asymptotic Single Risk Factor Model," Operations Research Proceedings, in: Bo Hu & Karl Morasch & Stefan Pickl & Markus Siegle (ed.), Operations Research Proceedings 2010, pages 111-116, Springer.
    20. Ashcraft, Adam B. & Schuermann, Til, 2008. "Understanding the Securitization of Subprime Mortgage Credit," Foundations and Trends(R) in Finance, now publishers, vol. 2(3), pages 191-309, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:36:y:2017:i:6-9:p:699-712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.