IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v22y2013i3p448-465.html
   My bibliography  Save this article

Reducing the mean squared error of quantile-based estimators by smoothing

Author

Listed:
  • Mia Hubert
  • Irène Gijbels
  • Dina Vanpaemel

Abstract

Many univariate robust estimators are based on quantiles. As already theoretically pointed out by Fernholz (in J. Stat. Plan. Inference 57(1), 29–38, 1997 ), smoothing the empirical distribution function with an appropriate kernel and bandwidth can reduce the variance and mean squared error (MSE) of some quantile-based estimators in small data sets. In this paper we apply this idea on several robust estimators of location, scale and skewness. We propose a robust bandwidth selection and bias reduction procedure. We show that the use of this smoothing method indeed leads to smaller MSEs, also at contaminated data sets. In particular, we obtain better performances for the medcouple which is a robust measure of skewness that can be used for outlier detection in skewed distributions. Copyright Sociedad de Estadística e Investigación Operativa 2013

Suggested Citation

  • Mia Hubert & Irène Gijbels & Dina Vanpaemel, 2013. "Reducing the mean squared error of quantile-based estimators by smoothing," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 448-465, September.
  • Handle: RePEc:spr:testjl:v:22:y:2013:i:3:p:448-465
    DOI: 10.1007/s11749-012-0293-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-012-0293-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-012-0293-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ci­zek, P. & Tamine, J. & Härdle, W., 2008. "Smoothed L-estimation of regression function," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5154-5162, August.
    2. Jin Zhang & Xueren Wang, 2009. "Robust normal reference bandwidth for kernel density estimation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(1), pages 13-23, February.
    3. Hubert, M. & Vandervieren, E., 2008. "An adjusted boxplot for skewed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5186-5201, August.
    4. A. Delaigle & I. Gijbels, 2002. "Estimation of integrated squared density derivatives from a contaminated sample," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 869-886, October.
    5. Mia Hubert & Stephan Van der Veeken, 2010. "Robust classification for skewed data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 4(4), pages 239-254, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Román Salmerón Gómez & Ainara Rodríguez Sánchez & Catalina García García & José García Pérez, 2020. "The VIF and MSE in Raise Regression," Mathematics, MDPI, vol. 8(4), pages 1-28, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    2. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    3. Nicodemo, Catia & Satorra, Albert, 2020. "Exploratory Data Analysis on Large Data Sets: The Example of Salary Variation in Spanish Social Security Data," IZA Discussion Papers 13459, Institute of Labor Economics (IZA).
    4. Warshaw, Evan, 2020. "Asymmetric volatility spillover between European equity and foreign exchange markets: Evidence from the frequency domain," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 1-14.
    5. Vincenzo Verardi, 2013. "Semiparametric regression in Stata," United Kingdom Stata Users' Group Meetings 2013 14, Stata Users Group.
    6. Finger, Robert, 2012. "Biases in Farm-Level Yield Risk Analysis due to Data Aggregation," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 61(01), pages 1-14, February.
    7. Shirin Enshaeifar & Ahmed Zoha & Andreas Markides & Severin Skillman & Sahr Thomas Acton & Tarek Elsaleh & Masoud Hassanpour & Alireza Ahrabian & Mark Kenny & Stuart Klein & Helen Rostill & Ramin Nilf, 2018. "Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-20, May.
    8. Mario A. Rojas & Yuri A. Iriarte, 2022. "A Lindley-Type Distribution for Modeling High-Kurtosis Data," Mathematics, MDPI, vol. 10(13), pages 1-19, June.
    9. Maciej Kostrzewski & Jadwiga Kostrzewska, 2021. "The Impact of Forecasting Jumps on Forecasting Electricity Prices," Energies, MDPI, vol. 14(2), pages 1-17, January.
    10. Vencalek, Ondrej & Pokotylo, Oleksii, 2018. "Depth-weighted Bayes classification," Computational Statistics & Data Analysis, Elsevier, vol. 123(C), pages 1-12.
    11. Parmeter, Christopher F., 2008. "The effect of measurement error on the estimated shape of the world distribution of income," Economics Letters, Elsevier, vol. 100(3), pages 373-376, September.
    12. Holzmann, Hajo & Bissantz, Nicolai & Munk, Axel, 2007. "Density testing in a contaminated sample," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 57-75, January.
    13. Václav Plevka & Pieter Segaert & Chris M. J. Tampère & Mia Hubert, 2016. "Analysis of travel activity determinants using robust statistics," Transportation, Springer, vol. 43(6), pages 979-996, November.
    14. V�ctor Leiva & Emilia Athayde & Cecilia Azevedo & Carolina Marchant, 2011. "Modeling wind energy flux by a Birnbaum--Saunders distribution with an unknown shift parameter," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2819-2838, February.
    15. M. Hubert & P. Rousseeuw & K. Vakili, 2014. "Shape bias of robust covariance estimators: an empirical study," Statistical Papers, Springer, vol. 55(1), pages 15-28, February.
    16. Jeremias Leão & Francisco Cysneiros & Helton Saulo & N. Balakrishnan, 2016. "Constrained test in linear models with multivariate power exponential distribution," Computational Statistics, Springer, vol. 31(4), pages 1569-1592, December.
    17. Alvarez, Agustín & Boente, Graciela & Kudraszow, Nadia, 2019. "Robust sieve estimators for functional canonical correlation analysis," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 46-62.
    18. Aurore Delaigle & Peter Hall, 2016. "Methodology for non-parametric deconvolution when the error distribution is unknown," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 231-252, January.
    19. Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
    20. Bissantz, Nicolai & Birke, Melanie, 2008. "Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators," Technical Reports 2008,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:22:y:2013:i:3:p:448-465. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.