The VIF and MSE in Raise Regression
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Wenxing Guo & Xiaohui Liu & Shangli Zhang, 2016. "The principal correlation components estimator and its optimality," Statistical Papers, Springer, vol. 57(3), pages 755-779, September.
- Mia Hubert & Irène Gijbels & Dina Vanpaemel, 2013. "Reducing the mean squared error of quantile-based estimators by smoothing," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 448-465, September.
- Yalian Li & Hu Yang, 2012. "A new Liu-type estimator in linear regression model," Statistical Papers, Springer, vol. 53(2), pages 427-437, May.
- Yoshimasa Uematsu & Shinya Tanaka, 2019. "High†dimensional macroeconomic forecasting and variable selection via penalized regression," The Econometrics Journal, Royal Economic Society, vol. 22(1), pages 34-56.
- Artur Klinger, 2001. "Inference in high dimensional generalized linear models based on soft thresholding," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 377-392.
- Kazuhiro Ohtani, 1998. "An MSE comparison of the restricted Stein-rule and minimum mean squared error estimators in regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 7(2), pages 361-376, December.
- Golan, Amos, 2008. "Information and Entropy Econometrics — A Review and Synthesis," Foundations and Trends(R) in Econometrics, now publishers, vol. 2(1–2), pages 1-145, February.
- Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
- M. Aguilera-Morillo & Ana Aguilera & Manuel Escabias & Mariano Valderrama, 2013. "Penalized spline approaches for functional logit regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(2), pages 251-277, June.
- Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
- Catalina Garcia & José Pérez & José Liria, 2011. "The raise method. An alternative procedure to estimate the parameters in presence of collinearity," Quality & Quantity: International Journal of Methodology, Springer, vol. 45(2), pages 403-423, February.
- Henk Kiers & Age Smilde, 2007. "A comparison of various methods for multivariate regression with highly collinear variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 16(2), pages 193-228, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rasha Ashraf, 2024. "Bank Customer Churn Prediction Using Machine Learning Framework," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 14(4), pages 1-5.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
- Román Salmerón Gómez & Catalina García García & José García Pérez, 2020. "Detection of Near-Nulticollinearity through Centered and Noncentered Regression," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
- Murat Genç, 2022. "A new double-regularized regression using Liu and lasso regularization," Computational Statistics, Springer, vol. 37(1), pages 159-227, March.
- Harold A. Hernández-Roig & M. Carmen Aguilera-Morillo & Rosa E. Lillo, 2021. "Functional Modeling of High-Dimensional Data: A Manifold Learning Approach," Mathematics, MDPI, vol. 9(4), pages 1-22, February.
- Mogliani, Matteo & Simoni, Anna, 2021.
"Bayesian MIDAS penalized regressions: Estimation, selection, and prediction,"
Journal of Econometrics, Elsevier, vol. 222(1), pages 833-860.
- Matteo Mogliani & Anna Simoni, 2019. "Bayesian MIDAS Penalized Regressions: Estimation, Selection, and Prediction," Papers 1903.08025, arXiv.org, revised Jun 2020.
- Matteo Mogliani & Anna Simoni, 2020. "Bayesian MIDAS penalized regressions: Estimation, selection, and prediction," Post-Print hal-03089878, HAL.
- Matteo Mogliani, 2019. "Bayesian MIDAS penalized regressions: estimation, selection, and prediction," Working papers 713, Banque de France.
- Ning Li & Hu Yang, 2021. "Nonnegative estimation and variable selection under minimax concave penalty for sparse high-dimensional linear regression models," Statistical Papers, Springer, vol. 62(2), pages 661-680, April.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Yoshiki Nakajima & Naoya Sueishi, 2022. "Forecasting the Japanese macroeconomy using high-dimensional data," The Japanese Economic Review, Springer, vol. 73(2), pages 299-324, April.
- Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
- Matsui, Hidetoshi, 2014. "Variable and boundary selection for functional data via multiclass logistic regression modeling," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 176-185.
- Lansangan, Joseph Ryan G. & Barrios, Erniel B., 2017. "Simultaneous dimension reduction and variable selection in modeling high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 242-256.
- Lee, Juyong & Reiner, David M., 2023. "Determinants of public preferences on low-carbon energy sources: Evidence from the United Kingdom," Energy, Elsevier, vol. 284(C).
- Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
- Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020.
"Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
- Heinrich, Markus & Carstensen, Kai & Reif, Magnus & Wolters, Maik, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168206, Verein für Socialpolitik / German Economic Association.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2017. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model. An Application to the German Business Cycle," CESifo Working Paper Series 6457, CESifo.
- Kai Carstensen & Markus Heinrich & Magnus Reif & Maik H. Wolters, 2019. "Predicting Ordinary and Severe Recessions with a Three-State Markov-Switching Dynamic Factor Model," Jena Economics Research Papers 2019-006, Friedrich-Schiller-University Jena.
- Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
- Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
- Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
- Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
- Candelon, B. & Hurlin, C. & Tokpavi, S., 2012.
"Sampling error and double shrinkage estimation of minimum variance portfolios,"
Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
- Candelon, B. & Hurlin, C. & Tokpavi, S., 2011. "Sampling error and double shrinkage estimation of minimum variance portfolios," Research Memorandum 002, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Bertrand Candelon & Christophe Hurlin & Sessi Tokpavi, 2012. "Sampling Error and Double Shrinkage Estimation of Minimum Variance Portfolios," Post-Print hal-01385835, HAL.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2025.
"Specification Choices in Quantile Regression for Empirical Macroeconomics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 40(1), pages 57-73, January.
- Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
- Carriero, Andrea & Clark, Todd & Marcellino, Massimiliano, 2024. "Specification Choices in Quantile Regression for Empirical Macroeconomics," CEPR Discussion Papers 18901, C.E.P.R. Discussion Papers.
More about this item
Keywords
detection; mean square error; multicollinearity; raise regression; variance inflation factor;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:4:p:605-:d:346167. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.