IDEAS home Printed from https://ideas.repec.org/p/tiu/tiucen/51a09fbd-293b-4386-bfe9-beb04c2027e9.html
   My bibliography  Save this paper

Smoothed L-estimation of Regression Function

Author

Listed:
  • Cizek, P.

    (Tilburg University, Center For Economic Research)

  • Tamine, J.
  • Härdle, W.K.

Abstract

The Nadaraya-Watson estimator of regression is known to be highly sensitive to the presence of outliers in the sample. A possible way of robustication consists in using local L-estimates of regression. Whereas the local L-estimation is traditionally done using an empirical conditional distribution function, we propose to use instead a smoothed conditional distribution function. We show that this smoothed L-estimation approach provides computational as well as statistical finite sample improvements. The asymptotic distribution of the estimator is derived under mild Ø-mixing conditions.
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Cizek, P. & Tamine, J. & Härdle, W.K., 2006. "Smoothed L-estimation of Regression Function," Discussion Paper 2006-20, Tilburg University, Center for Economic Research.
  • Handle: RePEc:tiu:tiucen:51a09fbd-293b-4386-bfe9-beb04c2027e9
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/777427/20.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Cizek, P. & Hardle, W., 2006. "Robust estimation of dimension reduction space," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 545-555, November.
    2. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    3. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    4. Matthias Fengler & Wolfgang Härdle & Christophe Villa, 2003. "The Dynamics of Implied Volatilities: A Common Principal Components Approach," Review of Derivatives Research, Springer, vol. 6(3), pages 179-202, October.
    5. Pavel Cizek & Wolfgang Karl Härdle & Rafal Weron, 2005. "Statistical Tools for Finance and Insurance," HSC Books, Hugo Steinhaus Center, Wroclaw University of Science and Technology, number hsbook0501, December.
    6. Lucas, Andre, 1995. "An outlier robust unit root test with an application to the extended Nelson-Plosser data," Journal of Econometrics, Elsevier, vol. 66(1-2), pages 153-173.
    7. Shinichi Sakata & Halbert White, 1998. "High Breakdown Point Conditional Dispersion Estimation with Application to S&P 500 Daily Returns Volatility," Econometrica, Econometric Society, vol. 66(3), pages 529-568, May.
    8. Pagan,Adrian & Ullah,Aman, 1999. "Nonparametric Econometrics," Cambridge Books, Cambridge University Press, number 9780521355643, January.
    9. Detlefsen, Kai & Härdle, Wolfgang Karl, 2005. "Common functional implied volatility analysis," SFB 649 Discussion Papers 2005-012, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    10. repec:bla:jfinan:v:53:y:1998:i:2:p:499-547 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mia Hubert & Irène Gijbels & Dina Vanpaemel, 2013. "Reducing the mean squared error of quantile-based estimators by smoothing," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 448-465, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borak, Szymon & Fengler, Matthias R. & Härdle, Wolfgang Karl, 2005. "DSFM fitting of implied volatility surfaces," SFB 649 Discussion Papers 2005-022, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    2. repec:hum:wpaper:sfb649dp2005-022 is not listed on IDEAS
    3. Čížek, Pavel, 2008. "General Trimmed Estimation: Robust Approach To Nonlinear And Limited Dependent Variable Models," Econometric Theory, Cambridge University Press, vol. 24(6), pages 1500-1529, December.
    4. Martins-Filho, Carlos & Yao, Feng & Torero, Maximo, 2018. "Nonparametric Estimation Of Conditional Value-At-Risk And Expected Shortfall Based On Extreme Value Theory," Econometric Theory, Cambridge University Press, vol. 34(1), pages 23-67, February.
    5. Detlefsen, Kai & Härdle, Wolfgang Karl & Moro, Rouslan A., 2007. "Empirical pricing kernels and investor preferences," SFB 649 Discussion Papers 2007-017, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    6. repec:hum:wpaper:sfb649dp2005-016 is not listed on IDEAS
    7. repec:wyi:journl:002108 is not listed on IDEAS
    8. Uwe Hassler & Paulo M.M. Rodrigues & Antonio Rubia, 2016. "Quantile Regression for Long Memory Testing: A Case of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 14(4), pages 693-724.
    9. Čížek, Pavel, 2012. "Semiparametric robust estimation of truncated and censored regression models," Journal of Econometrics, Elsevier, vol. 168(2), pages 347-366.
    10. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    11. Arie Preminger & Shinichi Sakata, 2007. "A model selection method for S-estimation," Econometrics Journal, Royal Economic Society, vol. 10(2), pages 294-319, July.
    12. Pavel Čížek, 2013. "Reweighted least trimmed squares: an alternative to one-step estimators," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 514-533, September.
    13. Rickard Sandberg, 2015. "M-estimator based unit root tests in the ESTAR framework," Statistical Papers, Springer, vol. 56(4), pages 1115-1135, November.
    14. Čίžek, Pavel & Härdle, Wolfgang Karl, 2006. "Robust econometrics," SFB 649 Discussion Papers 2006-050, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Loriano Mancini & Fabio Trojani, 2011. "Robust Value at Risk Prediction," Journal of Financial Econometrics, Oxford University Press, vol. 9(2), pages 281-313, Spring.
    16. repec:hum:wpaper:sfb649dp2007-017 is not listed on IDEAS
    17. Fengler, Matthias & Hin, Lin-Yee, 2011. "Semi-nonparametric estimation of the call price surface under strike and time-to-expiry no-arbitrage constraints," Economics Working Paper Series 1136, University of St. Gallen, School of Economics and Political Science, revised May 2013.
    18. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    19. Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
    20. Cizek, P., 2004. "Asymptotics of Least Trimmed Squares Regression," Other publications TiSEM dab5d551-aca6-40bf-b92e-c, Tilburg University, School of Economics and Management.
    21. Benko, Michal & Härdle, Wolfgang Karl & Kneip, Alois, 2006. "Common functional principal components," SFB 649 Discussion Papers 2006-010, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    22. Hong, Seok Young & Linton, Oliver, 2020. "Nonparametric estimation of infinite order regression and its application to the risk-return tradeoff," Journal of Econometrics, Elsevier, vol. 219(2), pages 389-424.
    23. Kneip, Alois & Benko, Michal, 2005. "Common functional component modelling," SFB 649 Discussion Papers 2005-016, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    24. Antonio Mele & Filippo Altissimo, 2004. "Simulated Nonparametric Estimation of Continuous Time Models of Asset Prices and Returns," FMG Discussion Papers dp476, Financial Markets Group.

    More about this item

    Keywords

    nonparametric regression; L-estimation; smoothed cumulative distribution function;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:51a09fbd-293b-4386-bfe9-beb04c2027e9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.