IDEAS home Printed from https://ideas.repec.org/p/boc/usug13/14.html
   My bibliography  Save this paper

Semiparametric regression in Stata

Author

Listed:
  • Vincenzo Verardi

    (Free University of Brussels)

Abstract

Semiparametric regression deals with the introduction of some very general nonlinear functional forms in regression analyses. This class of regression models is generally used to fit a parametric model in which the functional form of a subset of the explanatory variables is not known and/or in which the distribution of the error term cannot be assumed of being of a specific type beforehand. To fix ideas, consider the partial linear model y = zb + f(x) + e, in which the shape of the potentially nonlinear function of predictor x is of particular interest. Two approaches to modeling f(x) are to use splines or fractional polynomials. This talk reviews other more general approaches, and the commands available in Stata to fit such models. The main topic of the talk will be partial linear regression models, with some brief discussion also of so-called single index and generalized additive models. Though several semiparametric regression methods have been proposed and developed in the literature, these are probably the most popular ones. The general idea of partial linear regression models is that a dependent variable is regressed on i) a set of explanatory variables entering the model linearly and ii) a set of variables entering the model nonlinearly but without assuming any specific functional form. Several estimators have been proposed in the literature and are available in Stata. For example, the semipar command makes available what is called the double residuals estimator introduced by Robinson (1988), which is consistent and efficient. Similarly, the plreg command fits an alternative difference-based estimator proposed by Yatchew (1998) that has similar statistical properties to Robinson’s estimator. These estimators will be briefly compared to identify some drawbacks and pitfalls of both methods. A natural concern of researchers is how these estimators could be modified to deal with heteroskedasticity, serial correlation, and endogeneity in cross-sectional data or how they could be adapted in the context of panel data to control for unobserved heterogeneity. As a consequence, a substantial part of the talk will be devoted to explaining i) how the plreg and semipar commands can be used to tackle these very common violations of the Gauss–Markov assumptions in cross-sectional data and ii) how the user-written xtsemipar command makes a semiparametric regression easy to fit in the context of panel data. Because it is sometimes possible to move toward pure parametric models, a test proposed by Hardle and Mammen (1993) and built to check whether the nonparametric fit can be satisfactorily approximated by a parametric polynomial adjustment of order p will be described.

Suggested Citation

  • Vincenzo Verardi, 2013. "Semiparametric regression in Stata," United Kingdom Stata Users' Group Meetings 2013 14, Stata Users Group.
  • Handle: RePEc:boc:usug13:14
    as

    Download full text from publisher

    File URL: http://repec.org/usug2013/verardi.uk13.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Nicholas J. Cox, 2009. "Speaking Stata: Creating and varying box plots," Stata Journal, StataCorp LP, vol. 9(3), pages 478-496, September.
    2. Bruffaerts, Christopher & Verardi, Vincenzo & Vermandele, Catherine, 2014. "A generalized boxplot for skewed and heavy-tailed distributions," Statistics & Probability Letters, Elsevier, vol. 95(C), pages 110-117.
    3. Hubert, M. & Vandervieren, E., 2008. "An adjusted boxplot for skewed distributions," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5186-5201, August.
    4. Vincenzo Verardi, 2013. "Semiparametric regression in Stata," United Kingdom Stata Users' Group Meetings 2013 14, Stata Users Group.
    5. Yatchew,Adonis, 2003. "Semiparametric Regression for the Applied Econometrician," Cambridge Books, Cambridge University Press, number 9780521812832.
    6. Nicholas J. Cox, 2013. "Speaking Stata: Creating and varying box plots: Correction," Stata Journal, StataCorp LP, vol. 13(2), pages 398-400, June.
    7. Vincenzo Verardi & Nicolas Debarsy, 2012. "Robinson's square root of N consistent semiparametric regression estimator in Stata," Stata Journal, StataCorp LP, vol. 12(4), pages 726-735, December.
    8. Adonis Yatchew, 1998. "Nonparametric Regression Techniques in Economics," Journal of Economic Literature, American Economic Association, vol. 36(2), pages 669-721, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincenzo Verardi, 2013. "Semiparametric regression in Stata," United Kingdom Stata Users' Group Meetings 2013 14, Stata Users Group.
    2. Govindapuram Suresh, 2023. "Financial Inclusion and Its Impact on Fertility: An Empirical Investigation," Indian Journal of Human Development, , vol. 17(2), pages 344-358, August.
    3. Rojas Valdes, Ruben I. & Lin Lawell, C.-Y. Cynthia & Taylor, J. Edward, 2017. "The Dynamic Migration Game: A Structural Econometric Model and Application to Rural Mexico," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259184, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Syed Abul Hasan, 2016. "Engel curves and equivalence scales for Bangladesh," Journal of the Asia Pacific Economy, Taylor & Francis Journals, vol. 21(2), pages 301-315, April.
    2. Ichimura, Hidehiko & Todd, Petra E., 2007. "Implementing Nonparametric and Semiparametric Estimators," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74, Elsevier.
    3. Nuria Gallego & Carlos Llano, 2014. "The Border Effect and the Nonlinear Relationship between Trade and Distance," Review of International Economics, Wiley Blackwell, vol. 22(5), pages 1016-1048, November.
    4. Michael Lokshin, 2006. "Difference-based semiparametric estimation of partial linear regression models," Stata Journal, StataCorp LP, vol. 6(3), pages 377-383, September.
    5. Pholo Bala, Alain, 2009. "Urban concentration and economic growth: checking for specific regional effects," LIDAM Discussion Papers CORE 2009038, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Cheolsung Park, 2014. "Why do children transfer to their parents? Evidence from South Korea," Review of Economics of the Household, Springer, vol. 12(3), pages 461-485, September.
    7. Lessmann, Christian, 2014. "Spatial inequality and development — Is there an inverted-U relationship?," Journal of Development Economics, Elsevier, vol. 106(C), pages 35-51.
    8. Daniel McFadden, 2014. "The new science of pleasure: consumer choice behavior and the measurement of well-being," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 2, pages 7-48, Edward Elgar Publishing.
    9. Ayhan Kose, M. & Prasad, Eswar S. & Taylor, Ashley D., 2011. "Thresholds in the process of international financial integration," Journal of International Money and Finance, Elsevier, vol. 30(1), pages 147-179, February.
    10. Tai-Hsin Huang & Kuan-Chen Chen & Chien-Hsiu Lin & Ming-Tai Chung, 2014. "Consistent estimation of technical and allocative efficiencies for a semiparametric stochastic cost frontier with shadow input prices," Journal of Productivity Analysis, Springer, vol. 41(2), pages 307-320, April.
    11. Daniel L. McFadden, 2013. "The New Science of Pleasure," NBER Working Papers 18687, National Bureau of Economic Research, Inc.
    12. Syed Abul Hasan, 2013. "The impact of a large rice price increase on welfare and poverty in Bangladesh," ASARC Working Papers 2013-11, The Australian National University, Australia South Asia Research Centre.
    13. Kevin Denny & Orla Doyle, 2010. "Returns to basic skills in central and eastern Europe," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 18(1), pages 183-208, January.
    14. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    15. Corak, Miles & Lauzon, Darren, 2009. "Differences in the distribution of high school achievement: The role of class-size and time-in-term," Economics of Education Review, Elsevier, vol. 28(2), pages 189-198, April.
    16. Almeida, Alexandre N. & Bravo-Ureta, Boris E., 2019. "Agricultural productivity, shadow wages and off-farm labor decisions in Nicaragua," Economic Systems, Elsevier, vol. 43(1), pages 99-110.
    17. Koop, Gary & Poirier, Dale J., 2004. "Bayesian variants of some classical semiparametric regression techniques," Journal of Econometrics, Elsevier, vol. 123(2), pages 259-282, December.
    18. Nicodemo, Catia & Satorra, Albert, 2020. "Exploratory Data Analysis on Large Data Sets: The Example of Salary Variation in Spanish Social Security Data," IZA Discussion Papers 13459, Institute of Labor Economics (IZA).
    19. SCHAFGANS, Marcia M.A. & ZINDE-WALSH, Victoria, 2007. "Robust Average Derivative Estimation," Cahiers de recherche 12-2007, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    20. Feng, Guohua & McLaren, Keith R. & Yang, Ou & Zhang, Xiaohui & Zhao, Xueyan, 2021. "The impact of environmental policy stringency on industrial productivity growth: A semi-parametric study of OECD countries," Energy Economics, Elsevier, vol. 100(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:usug13:14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.