Comment on: Sequences of regressions and their independences
Author
Abstract
Suggested Citation
DOI: 10.1007/s11749-012-0288-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Alberto Roverato, 2002. "Hyper Inverse Wishart Distribution for Non‐decomposable Graphs and its Application to Bayesian Inference for Gaussian Graphical Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 391-411, September.
- Nanny Wermuth & Kayvan Sadeghi, 2012. "Sequences of regressions and their independences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 215-252, June.
- Nanny Wermuth & Kayvan Sadeghi, 2012. "Rejoinder on: Sequences of regressions and their independences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 274-279, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Baranyi, Máté & Bolla, Marianna, 2021. "Iterated conditional expectation algorithm on DAGs and regression graphs," Econometrics and Statistics, Elsevier, vol. 20(C), pages 131-152.
- Alberto Roverato, 2015. "Log-mean Linear Parameterization for Discrete Graphical Models of Marginal Independence and the Analysis of Dichotomizations," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 627-648, June.
- Davide Altomare & Guido Consonni & Luca La Rocca, 2013. "Objective Bayesian Search of Gaussian Directed Acyclic Graphical Models for Ordered Variables with Non-Local Priors," Biometrics, The International Biometric Society, vol. 69(2), pages 478-487, June.
- Monia Lupparelli & Alberto Roverato, 2017. "Log-mean linear regression models for binary responses with an application to multimorbidity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(2), pages 227-252, February.
- Vassilios Bazinas & Bent Nielsen, 2022.
"Causal Transmission in Reduced-Form Models,"
Econometrics, MDPI, vol. 10(2), pages 1-25, March.
- Vassili Bazinas & Bent Nielsen, 2015. "Causal transmission in reduced-form models," Economics Papers 2015-W07, Economics Group, Nuffield College, University of Oxford.
- Carter, Christopher K. & Wong, Frederick & Kohn, Robert, 2011. "Constructing priors based on model size for nondecomposable Gaussian graphical models: A simulation based approach," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 871-883, May.
- Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016.
"Sparse Graphical Vector Autoregression: A Bayesian Approach,"
Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
- Roberto Casarin & Daniel Felix Ahelegbey & Monica Billio, 2014. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Working Papers 2014:29, Department of Economics, University of Venice "Ca' Foscari".
- K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility using state space models," Papers 0802.0223, arXiv.org.
- Guido Consonni & Luca La Rocca & Stefano Peluso, 2017. "Objective Bayes Covariate-Adjusted Sparse Graphical Model Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 741-764, September.
- Webb, Emily L. & Forster, Jonathan J., 2008. "Bayesian model determination for multivariate ordinal and binary data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2632-2649, January.
- Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
- Abdolreza Mohammadi & Fentaw Abegaz & Edwin Heuvel & Ernst C. Wit, 2017. "Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 629-645, April.
- Junghi Kim & Kim‐Anh Do & Min Jin Ha & Christine B. Peterson, 2019. "Bayesian inference of hub nodes across multiple networks," Biometrics, The International Biometric Society, vol. 75(1), pages 172-182, March.
- Federico Castelletti, 2020. "Bayesian Model Selection of Gaussian Directed Acyclic Graph Structures," International Statistical Review, International Statistical Institute, vol. 88(3), pages 752-775, December.
- Beatrice Franzolini & Alexandros Beskos & Maria De Iorio & Warrick Poklewski Koziell & Karolina Grzeszkiewicz, 2022. "Change point detection in dynamic Gaussian graphical models: the impact of COVID-19 pandemic on the US stock market," Papers 2208.00952, arXiv.org, revised May 2023.
- Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
- Dipankar Bandyopadhyay & Antonio Canale, 2016. "Non-parametric spatial models for clustered ordered periodontal data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 619-640, August.
- Max Hinne & Ronald J Janssen & Tom Heskes & Marcel AJ van Gerven, 2015. "Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-26, November.
- Roverato, Alberto & Paterlini, Sandra, 2004. "Technological modelling for graphical models: an approach based on genetic algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 323-337, September.
- Codazzi, Laura & Colombi, Alessandro & Gianella, Matteo & Argiento, Raffaele & Paci, Lucia & Pini, Alessia, 2022. "Gaussian graphical modeling for spectrometric data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:21:y:2012:i:2:p:268-273. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.