IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1004534.html
   My bibliography  Save this article

Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates

Author

Listed:
  • Max Hinne
  • Ronald J Janssen
  • Tom Heskes
  • Marcel AJ van Gerven

Abstract

Functional connectivity concerns the correlated activity between neuronal populations in spatially segregated regions of the brain, which may be studied using functional magnetic resonance imaging (fMRI). This coupled activity is conveniently expressed using covariance, but this measure fails to distinguish between direct and indirect effects. A popular alternative that addresses this issue is partial correlation, which regresses out the signal of potentially confounding variables, resulting in a measure that reveals only direct connections. Importantly, provided the data are normally distributed, if two variables are conditionally independent given all other variables, their respective partial correlation is zero. In this paper, we propose a probabilistic generative model that allows us to estimate functional connectivity in terms of both partial correlations and a graph representing conditional independencies. Simulation results show that this methodology is able to outperform the graphical LASSO, which is the de facto standard for estimating partial correlations. Furthermore, we apply the model to estimate functional connectivity for twenty subjects using resting-state fMRI data. Results show that our model provides a richer representation of functional connectivity as compared to considering partial correlations alone. Finally, we demonstrate how our approach can be extended in several ways, for instance to achieve data fusion by informing the conditional independence graph with data from probabilistic tractography. As our Bayesian formulation of functional connectivity provides access to the posterior distribution instead of only to point estimates, we are able to quantify the uncertainty associated with our results. This reveals that while we are able to infer a clear backbone of connectivity in our empirical results, the data are not accurately described by simply looking at the mode of the distribution over connectivity. The implication of this is that deterministic alternatives may misjudge connectivity results by drawing conclusions from noisy and limited data.Author Summary: Significant neuroscientific effort is devoted to elucidating functional connectivity between spatially segregated brain regions. This requires that we are able to quantify the degree of dependence between the signals of different areas. Yet how this must be accomplished—using which measures, each with their own limitations and interpretations—is far from a trivial task. One frequently advocated metric for functional connectivity is partial correlation, which is related to conditional independence: if two regions are independent, conditioned on all other regions, then their partial correlation is zero, assuming Gaussian data. Here, we use a probabilistic generative model to describe the relationship between functional connectivity and conditional independence. We apply this Bayesian approach to reveal functional connectivity between subcortical areas, and in addition we propose different variants of the generative model for connectivity. In the first, we address how a Bayesian formulation of connectivity allows for integration with other imaging modalities, resulting in data fusion. Secondly, we show how prior constraints can be incorporated in our estimates of connectivity.

Suggested Citation

  • Max Hinne & Ronald J Janssen & Tom Heskes & Marcel AJ van Gerven, 2015. "Bayesian Estimation of Conditional Independence Graphs Improves Functional Connectivity Estimates," PLOS Computational Biology, Public Library of Science, vol. 11(11), pages 1-26, November.
  • Handle: RePEc:plo:pcbi00:1004534
    DOI: 10.1371/journal.pcbi.1004534
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004534
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1004534&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1004534?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Meinshausen, Nicolai, 2008. "A note on the Lasso for Gaussian graphical model selection," Statistics & Probability Letters, Elsevier, vol. 78(7), pages 880-884, May.
    2. Ashish Raj & Yu-hsien Chen, 2011. "The Wiring Economy Principle: Connectivity Determines Anatomy in the Human Brain," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-11, September.
    3. Alberto Roverato, 2002. "Hyper Inverse Wishart Distribution for Non‐decomposable Graphs and its Application to Bayesian Inference for Gaussian Graphical Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 391-411, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jie Jian & Peijun Sang & Mu Zhu, 2024. "Two Gaussian Regularization Methods for Time-Varying Networks," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(4), pages 853-873, December.
    2. Christine Peterson & Francesco C. Stingo & Marina Vannucci, 2015. "Bayesian Inference of Multiple Gaussian Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 159-174, March.
    3. A. Gibberd & S. Roy, 2021. "Consistent multiple changepoint estimation with fused Gaussian graphical models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(2), pages 283-309, April.
    4. Carter, Christopher K. & Wong, Frederick & Kohn, Robert, 2011. "Constructing priors based on model size for nondecomposable Gaussian graphical models: A simulation based approach," Journal of Multivariate Analysis, Elsevier, vol. 102(5), pages 871-883, May.
    5. Dipankar Bandyopadhyay & Antonio Canale, 2016. "Non-parametric spatial models for clustered ordered periodontal data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(4), pages 619-640, August.
    6. Daniel Felix Ahelegbey & Monica Billio & Roberto Casarin, 2016. "Sparse Graphical Vector Autoregression: A Bayesian Approach," Annals of Economics and Statistics, GENES, issue 123-124, pages 333-361.
    7. K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility using state space models," Papers 0802.0223, arXiv.org.
    8. Julio I. Chapeton & John H. Wittig & Sara K. Inati & Kareem A. Zaghloul, 2022. "Micro-scale functional modules in the human temporal lobe," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    9. Guido Consonni & Luca La Rocca & Stefano Peluso, 2017. "Objective Bayes Covariate-Adjusted Sparse Graphical Model Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 741-764, September.
    10. Roverato, Alberto & Paterlini, Sandra, 2004. "Technological modelling for graphical models: an approach based on genetic algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 323-337, September.
    11. Webb, Emily L. & Forster, Jonathan J., 2008. "Bayesian model determination for multivariate ordinal and binary data," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2632-2649, January.
    12. Codazzi, Laura & Colombi, Alessandro & Gianella, Matteo & Argiento, Raffaele & Paci, Lucia & Pini, Alessia, 2022. "Gaussian graphical modeling for spectrometric data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    13. Nicolai Meinshausen & Peter Bühlmann, 2010. "Stability selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(4), pages 417-473, September.
    14. Leonardo Bottolo & Marco Banterle & Sylvia Richardson & Mika Ala‐Korpela & Marjo‐Riitta Järvelin & Alex Lewin, 2021. "A computationally efficient Bayesian seemingly unrelated regressions model for high‐dimensional quantitative trait loci discovery," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 886-908, August.
    15. Donatello Telesca & Peter Müller & Steven M. Kornblau & Marc A. Suchard & Yuan Ji, 2012. "Modeling Protein Expression and Protein Signaling Pathways," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1372-1384, December.
    16. Helen Armstrong & Christopher K. Carter & Kevin K. F. Wong & Robert Kohn, 2007. "Bayesian Covariance Matrix Estimation using a Mixture of Decomposable Graphical Models," Discussion Papers 2007-13, School of Economics, The University of New South Wales.
    17. Ahelegbey, Daniel Felix, 2015. "The Econometrics of Bayesian Graphical Models: A Review With Financial Application," MPRA Paper 92634, University Library of Munich, Germany, revised 25 Apr 2016.
    18. Abdolreza Mohammadi & Fentaw Abegaz & Edwin Heuvel & Ernst C. Wit, 2017. "Bayesian modelling of Dupuytren disease by using Gaussian copula graphical models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 629-645, April.
    19. Bala Rajaratnam, 2012. "Comment on: Sequences of regressions and their independences," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 268-273, June.
    20. Andreas Fischer & Igor Litvinchev & Tetyana Romanova & Petro Stetsyuk & Georgiy Yaskov, 2023. "Quasi-Packing Different Spheres with Ratio Conditions in a Spherical Container," Mathematics, MDPI, vol. 11(9), pages 1-19, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.