IDEAS home Printed from https://ideas.repec.org/p/iim/iimawp/14577.html
   My bibliography  Save this paper

Are the temperature of Indian cities Increasing?: Some Insights Using Change Point Analysis with Functional Data

Author

Listed:
  • Laha, A. K.
  • Rathi, Poonam

Abstract

In recent years there has been considerable concern expressed worldwide regarding increase in temperature popularly called the global warming problem. In this paper we examine monthly temperature data of nine Indian cities for the period 1961 to 2013. We introduce a new Gaussian process based method for change point detection with functional data and use it to investigate the existence of change point for the temperature data series of nine Indian cities. It is found that there has been a rise in the average temperature for eight of the nine cities during this period. The magnitude of warming is found not to be uniform but vary across cities located in different parts of India. The cities located in hilly areas is seen to have warmed more than those located in the plains. The estimated change points for the eight cities are not identical but most of them are in the period 1994 - 2001. The fi ndings suggest that immediate policy measures are required to ensure that no further warming happens in these cities.

Suggested Citation

  • Laha, A. K. & Rathi, Poonam, 2017. "Are the temperature of Indian cities Increasing?: Some Insights Using Change Point Analysis with Functional Data," IIMA Working Papers WP 2017-08-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
  • Handle: RePEc:iim:iimawp:14577
    as

    Download full text from publisher

    File URL: https://www.iima.ac.in/sites/default/files/rnpfiles/21328933052017-08-03.pdf
    File Function: English Version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. István Berkes & Robertas Gabrys & Lajos Horváth & Piotr Kokoszka, 2009. "Detecting changes in the mean of functional observations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(5), pages 927-946, November.
    2. Hans-Georg Müller & Wenjing Yang, 2010. "Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 1-29, May.
    3. Mullen, Katharine M., 2014. "Continuous Global Optimization in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 60(i06).
    4. Hans-Georg Müller & Wenjing Yang, 2010. "Rejoinder on: dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(1), pages 60-67, May.
    5. Meiring, Wendy, 2007. "Oscillations and Time Trends in Stratospheric Ozone Levels: A Functional Data Analysis Approach," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 788-802, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laha, A. K. & Rathi, Poonam, 2017. "New Approaches to Prediction using Functional Data Analysis," IIMA Working Papers WP 2017-08-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
    2. Hao, Siteng & Lin, Shu-Chin & Wang, Jane-Ling & Zhong, Qixian, 2024. "Dynamic modeling for multivariate functional and longitudinal data," Journal of Econometrics, Elsevier, vol. 239(2).
    3. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    4. Buddhananda Banerjee & Satyaki Mazumder, 2018. "A more powerful test identifying the change in mean of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 691-715, June.
    5. Burdejova, P. & Härdle, W. & Kokoszka, P. & Xiong, Q., 2017. "Change point and trend analyses of annual expectile curves of tropical storms," Econometrics and Statistics, Elsevier, vol. 1(C), pages 101-117.
    6. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    7. Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
    8. Holger Dette & Pascal Quanz, 2023. "Detecting relevant changes in the spatiotemporal mean function," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 505-532, September.
    9. Sameh Abdulah & Yuxiao Li & Jian Cao & Hatem Ltaief & David E. Keyes & Marc G. Genton & Ying Sun, 2023. "Large‐scale environmental data science with ExaGeoStatR," Environmetrics, John Wiley & Sons, Ltd., vol. 34(1), February.
    10. Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
    11. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    12. J. Derek Tucker & Drew Yarger, 2024. "Elastic functional changepoint detection of climate impacts from localized sources," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    13. John Aston, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 256-257, June.
    14. Zhou, Jie, 2011. "Maximum likelihood ratio test for the stability of sequence of Gaussian random processes," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2114-2127, June.
    15. Won, Joong-Ho & Wu, Xiao & Lee, Sang Han & Lu, Ying, 2017. "Cross-sectional design with a short-term follow-up for prognostic imaging biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 154-176.
    16. Changryong Baek & Piotr Kokoszka & Xiangdong Meng, 2024. "Test of change point versus long‐range dependence in functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(4), pages 497-512, July.
    17. Xiao-Dong Zhou & Yun-Juan Wang & Rong-Xian Yue, 2021. "Optimal designs for discrete-time survival models with random effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(2), pages 300-332, April.
    18. Mengjia Yu & Xiaohui Chen, 2021. "Finite sample change point inference and identification for high‐dimensional mean vectors," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 247-270, April.
    19. González-Rodríguez, Gil & Colubi, Ana & Gil, María Ángeles, 2012. "Fuzzy data treated as functional data: A one-way ANOVA test approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 943-955.
    20. Natalie Neumeyer & Leonie Selk, 2025. "Testing for changes in the error distribution in functional linear models," Statistical Papers, Springer, vol. 66(2), pages 1-17, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iim:iimawp:14577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/eciimin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.