IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v70y2019i2d10.1007_s11235-018-0491-8.html
   My bibliography  Save this article

Estimation of event loss duration for energy harvested wireless body sensor node

Author

Listed:
  • Ritwik Haldar

    (NIT Silchar)

  • Ashraf Hossain

    (NIT Silchar)

  • Kirtan Gopal Panda

    (NIT Silchar)

Abstract

Energy harvesting (EH) body sensor nodes (BSNs) operate independently in the system and are the emerging solution to multiple replacements of battery operated BSNs. After deployment, the stored energy of the BSN falls to a minimum level due to uncertain energy harvesting process. Therefore, the node is unable to transmit the occurred events to the base station and stores them in storage buffer (SB) in a queue. Due to the queue overflow in SB, the BSN is unable to store the occurred events, therefore it is lost. In health monitoring system, loss of emergency or critical information has a bad impact on quality of service in the network. It is essential to have an estimate of the duration to occur an event loss in order to take precautions and prior control on nodes in critical situations for medical applications. We calculate the duration after which event loss occurs in SB by absorbing discrete-time Markov chain (DTMC) model to evaluate performance of the EH BSN with temporal death. We also derive a closed form expression of event loss duration which reduces the computational complexity of the conventional DTMC model. The analytical results are validated by Monte Carlo simulation using MATLAB.

Suggested Citation

  • Ritwik Haldar & Ashraf Hossain & Kirtan Gopal Panda, 2019. "Estimation of event loss duration for energy harvested wireless body sensor node," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 70(2), pages 231-244, February.
  • Handle: RePEc:spr:telsys:v:70:y:2019:i:2:d:10.1007_s11235-018-0491-8
    DOI: 10.1007/s11235-018-0491-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-018-0491-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-018-0491-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Seyedeh Narjes Fallah & Ravinesh Chand Deo & Mohammad Shojafar & Mauro Conti & Shahaboddin Shamshirband, 2018. "Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions," Energies, MDPI, vol. 11(3), pages 1-31, March.
    2. Salar Chamanian & Sajjad Baghaee & Hasan Ulusan & Özge Zorlu & Haluk Külah & Elif Uysal-Biyikoglu, 2014. "Powering-up Wireless Sensor Nodes Utilizing Rechargeable Batteries and an Electromagnetic Vibration Energy Harvesting System," Energies, MDPI, vol. 7(10), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    2. Alfredo Alcayde & Raul Baños & Francisco M. Arrabal-Campos & Francisco G. Montoya, 2019. "Optimization of the Contracted Electric Power by Means of Genetic Algorithms," Energies, MDPI, vol. 12(7), pages 1-13, April.
    3. Heekwon Yang & Byeol Kim & Joosung Lee & Yonghan Ahn & Chankil Lee, 2018. "Advanced Wireless Sensor Networks for Sustainable Buildings Using Building Ducts," Sustainability, MDPI, vol. 10(8), pages 1-13, July.
    4. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    5. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    6. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    7. Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
    8. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    9. Rafal Dzikowski, 2020. "DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources," Energies, MDPI, vol. 13(14), pages 1-25, July.
    10. Andreea Valeria Vesa & Tudor Cioara & Ionut Anghel & Marcel Antal & Claudia Pop & Bogdan Iancu & Ioan Salomie & Vasile Teodor Dadarlat, 2020. "Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    11. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
    12. Bo Li & Yudong Wang & Jian Li & Shengxian Cao, 2018. "A Fully Distributed Approach for Economic Dispatch Problem of Smart Grid," Energies, MDPI, vol. 11(8), pages 1-21, August.
    13. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    14. Shahzad Aslam & Nasir Ayub & Umer Farooq & Muhammad Junaid Alvi & Fahad R. Albogamy & Gul Rukh & Syed Irtaza Haider & Ahmad Taher Azar & Rasool Bukhsh, 2021. "Towards Electric Price and Load Forecasting Using CNN-Based Ensembler in Smart Grid," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
    15. Aqdas Naz & Muhammad Umar Javed & Nadeem Javaid & Tanzila Saba & Musaed Alhussein & Khursheed Aurangzeb, 2019. "Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids," Energies, MDPI, vol. 12(5), pages 1-30, March.
    16. Sophie Marchand & Cristian Monsalve & Thorsten Reimann & Wolfram Heckmann & Jakob Ungerland & Hagen Lauer & Stephan Ruhe & Christoph Krauß, 2021. "Microgrid Systems: Towards a Technical Performance Assessment Frame," Energies, MDPI, vol. 14(8), pages 1-23, April.
    17. Chaturvedi, Shobhit & Rajasekar, Elangovan & Natarajan, Sukumar & McCullen, Nick, 2022. "A comparative assessment of SARIMA, LSTM RNN and Fb Prophet models to forecast total and peak monthly energy demand for India," Energy Policy, Elsevier, vol. 168(C).
    18. Fatma Yaprakdal, 2022. "An Ensemble Deep-Learning-Based Model for Hour-Ahead Load Forecasting with a Feature Selection Approach: A Comparative Study with State-of-the-Art Methods," Energies, MDPI, vol. 16(1), pages 1-13, December.
    19. Mohammad Zareein & Jalal Sahebkar Farkhani & Amirhossein Nikoofard & Turaj Amraee, 2022. "Optimizing Energy Management in Microgrids Based on Different Load Types in Smart Buildings," Energies, MDPI, vol. 16(1), pages 1-17, December.
    20. Brygida Klemens & Brygida Solga & Krystian Heffner & Piotr Gibas, 2022. "Environmental and Energy Conditions in Sustainable Regional Development," Energies, MDPI, vol. 15(15), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:70:y:2019:i:2:d:10.1007_s11235-018-0491-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.