IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i8p1993-d161118.html
   My bibliography  Save this article

A Fully Distributed Approach for Economic Dispatch Problem of Smart Grid

Author

Listed:
  • Bo Li

    (School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Yudong Wang

    (School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Jian Li

    (School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China)

  • Shengxian Cao

    (School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China)

Abstract

The cooperative, reliable and responsive characteristics make smart grid more popular than traditional power grid. However, with the extensive employment of smart grid concepts, the traditional centralized control methods expose a lot of shortcomings, such as communication congestion, computing complexity in central management systems, and so on. The distributed control method with flexible characteristics can meet the timeliness and effectiveness of information management in smart grid and ensure the information collection timely and the power dispatch economically. This article presents a decentralized approach based on multi agent system (MAS) for solving data collection and economic dispatch problem of smart grid. First, considering the generators and loads are distributed on many nodes in the space, a flooding-based consensus algorithm is proposed to achieve generator and load information for each agent. Then, a suitable distributed algorithm called λ -consensus is used for solving the economic dispatch problem, eventually, all generators can automatically minimize the total cost in a collective sense. Simulation results in standard test cases are presented to demonstrate the effectiveness of the proposed control strategy.

Suggested Citation

  • Bo Li & Yudong Wang & Jian Li & Shengxian Cao, 2018. "A Fully Distributed Approach for Economic Dispatch Problem of Smart Grid," Energies, MDPI, vol. 11(8), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1993-:d:161118
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/8/1993/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/8/1993/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kutaiba Sabah Nimma & Monaaf D. A. Al-Falahi & Hung Duc Nguyen & S. D. G. Jayasinghe & Thair S. Mahmoud & Michael Negnevitsky, 2018. "Grey Wolf Optimization-Based Optimum Energy-Management and Battery-Sizing Method for Grid-Connected Microgrids," Energies, MDPI, vol. 11(4), pages 1-27, April.
    2. Zahra Pooranian & Jemal H. Abawajy & Vinod P & Mauro Conti, 2018. "Scheduling Distributed Energy Resource Operation and Daily Power Consumption for a Smart Building to Optimize Economic and Environmental Parameters," Energies, MDPI, vol. 11(6), pages 1-17, May.
    3. Hafiz Majid Hussain & Nadeem Javaid & Sohail Iqbal & Qadeer Ul Hasan & Khursheed Aurangzeb & Musaed Alhussein, 2018. "An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid," Energies, MDPI, vol. 11(1), pages 1-28, January.
    4. Ali Mohammadi & Mohammad Javad Dehghani & Elham Ghazizadeh, 2018. "Game Theoretic Spectrum Allocation in Femtocell Networks for Smart Electric Distribution Grids," Energies, MDPI, vol. 11(7), pages 1-18, June.
    5. Colak, Ilhami & Sagiroglu, Seref & Fulli, Gianluca & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2016. "A survey on the critical issues in smart grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 396-405.
    6. Seyedeh Narjes Fallah & Ravinesh Chand Deo & Mohammad Shojafar & Mauro Conti & Shahaboddin Shamshirband, 2018. "Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions," Energies, MDPI, vol. 11(3), pages 1-31, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Li & Panpan Zhang & Xiangjun Li & Shengxian Cao, 2019. "Distributed Absorption and Half-Search Approach for Economic Dispatch Problem in Smart Grids," Energies, MDPI, vol. 12(8), pages 1-21, April.
    2. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heekwon Yang & Byeol Kim & Joosung Lee & Yonghan Ahn & Chankil Lee, 2018. "Advanced Wireless Sensor Networks for Sustainable Buildings Using Building Ducts," Sustainability, MDPI, vol. 10(8), pages 1-13, July.
    2. Christine Milchram & Geerten Van de Kaa & Neelke Doorn & Rolf Künneke, 2018. "Moral Values as Factors for Social Acceptance of Smart Grid Technologies," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    3. Yuanqian Ma & Xianyong Xiao & Ying Wang, 2018. "Investment Strategy and Multi–Objective Optimization Scheme for Premium Power under the Background of the Opening of Electric Retail Side," Energies, MDPI, vol. 11(8), pages 1-25, August.
    4. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    5. Al-Falahi, Monaaf D.A. & Jayasinghe, Shantha D.G. & Enshaei, Hossein, 2019. "Hybrid algorithm for optimal operation of hybrid energy systems in electric ferries," Energy, Elsevier, vol. 187(C).
    6. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
    7. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    8. Alfredo Alcayde & Raul Baños & Francisco M. Arrabal-Campos & Francisco G. Montoya, 2019. "Optimization of the Contracted Electric Power by Means of Genetic Algorithms," Energies, MDPI, vol. 12(7), pages 1-13, April.
    9. Kalair, A. & Abas, N. & Khan, N., 2016. "Comparative study of HVAC and HVDC transmission systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1653-1675.
    10. Hussain, Shahbaz & Hernandez Fernandez, Javier & Al-Ali, Abdulla Khalid & Shikfa, Abdullatif, 2021. "Vulnerabilities and countermeasures in electrical substations," International Journal of Critical Infrastructure Protection, Elsevier, vol. 33(C).
    11. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    12. Yongsheng Cao & Guanglin Zhang & Demin Li & Lin Wang & Zongpeng Li, 2018. "Online Energy Management and Heterogeneous Task Scheduling for Smart Communities with Residential Cogeneration and Renewable Energy," Energies, MDPI, vol. 11(8), pages 1-20, August.
    13. Jun-Mo Kim & Jeong Lee & Jin-Wook Kim & Junsin Yi & Chung-Yuen Won, 2021. "Power Conversion System Operation to Reduce the Electricity Purchasing Cost of Energy Storage Systems," Energies, MDPI, vol. 14(16), pages 1-20, August.
    14. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.
    15. Grégoire-Zawilski, Myriam & Popp, David, 2024. "Do technology standards induce innovation in environmental technologies when coordination is important?," Research Policy, Elsevier, vol. 53(1).
    16. Chen, Pengzhan & Liu, Mengchao & Chen, Chuanxi & Shang, Xin, 2019. "A battery management strategy in microgrid for personalized customer requirements," Energy, Elsevier, vol. 189(C).
    17. Fatih Issi & Orhan Kaplan, 2018. "The Determination of Load Profiles and Power Consumptions of Home Appliances," Energies, MDPI, vol. 11(3), pages 1-18, March.
    18. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    19. Sheikhahmadi, P. & Bahramara, S. & Moshtagh, J. & Yazdani Damavandi, M., 2018. "A risk-based approach for modeling the strategic behavior of a distribution company in wholesale energy market," Applied Energy, Elsevier, vol. 214(C), pages 24-38.
    20. Omowunmi Mary Longe & Khmaies Ouahada, 2018. "Mitigating Household Energy Poverty through Energy Expenditure Affordability Algorithm in a Smart Grid," Energies, MDPI, vol. 11(4), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:8:p:1993-:d:161118. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.