IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2628-d160112.html
   My bibliography  Save this article

Advanced Wireless Sensor Networks for Sustainable Buildings Using Building Ducts

Author

Listed:
  • Heekwon Yang

    (Department of Electronics and Communications Engineering, Hanyang University, ERICA Campus, Ansan 15588, Korea)

  • Byeol Kim

    (Department of Architectural Engineering, Hanyang University, ERICA Campus, Ansan 15588, Korea)

  • Joosung Lee

    (Department of Architectural Engineering, Hanyang University, ERICA Campus, Ansan 15588, Korea)

  • Yonghan Ahn

    (Department of Architectural Engineering, Hanyang University, ERICA Campus, Ansan 15588, Korea)

  • Chankil Lee

    (Department of Electronics and Communications Engineering, Hanyang University, ERICA Campus, Ansan 15588, Korea)

Abstract

The communication technology ZigBee has been widely adopted in wireless sensor networks (WSNs) for a wide range of industrial applications. However, although ZigBee provides low-power, low-cost mesh networking, it cannot guarantee steady and predictable network performance as channels are time-variant and highly attenuated by man-made obstacles. The networks also suffer from interference, especially in the important 2.4 GHz industrial, scientific, and medical (ISM) band. These degraded channel characteristics increase the number of hops, thus increasing both the packet error rate and transmission delays. In this paper, we report the deployment of a ZigBee-based WSN inside an existing building duct system utilized for intelligent waste collection in an industrial environment. The Received Signal Strength (RSS) and path losses were measured, revealing that the duct communication channel acts as a very effective waveguide, providing a more reliable and consistent network performance than conventional free space channels.

Suggested Citation

  • Heekwon Yang & Byeol Kim & Joosung Lee & Yonghan Ahn & Chankil Lee, 2018. "Advanced Wireless Sensor Networks for Sustainable Buildings Using Building Ducts," Sustainability, MDPI, vol. 10(8), pages 1-13, July.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2628-:d:160112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2628/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2628/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zahra Pooranian & Jemal H. Abawajy & Vinod P & Mauro Conti, 2018. "Scheduling Distributed Energy Resource Operation and Daily Power Consumption for a Smart Building to Optimize Economic and Environmental Parameters," Energies, MDPI, vol. 11(6), pages 1-17, May.
    2. Ali Hassan Sodhro & Sandeep Pirbhulal & Arun Kumar Sangaiah & Sonia Lohano & Gul Hassan Sodhro & Zongwei Luo, 2018. "5G-Based Transmission Power Control Mechanism in Fog Computing for Internet of Things Devices," Sustainability, MDPI, vol. 10(4), pages 1-17, April.
    3. Seyedeh Narjes Fallah & Ravinesh Chand Deo & Mohammad Shojafar & Mauro Conti & Shahaboddin Shamshirband, 2018. "Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions," Energies, MDPI, vol. 11(3), pages 1-31, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christine Milchram & Geerten Van de Kaa & Neelke Doorn & Rolf Künneke, 2018. "Moral Values as Factors for Social Acceptance of Smart Grid Technologies," Sustainability, MDPI, vol. 10(8), pages 1-23, August.
    2. Bo Li & Yudong Wang & Jian Li & Shengxian Cao, 2018. "A Fully Distributed Approach for Economic Dispatch Problem of Smart Grid," Energies, MDPI, vol. 11(8), pages 1-21, August.
    3. Yuanqian Ma & Xianyong Xiao & Ying Wang, 2018. "Investment Strategy and Multi–Objective Optimization Scheme for Premium Power under the Background of the Opening of Electric Retail Side," Energies, MDPI, vol. 11(8), pages 1-25, August.
    4. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
    5. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    6. Alfredo Alcayde & Raul Baños & Francisco M. Arrabal-Campos & Francisco G. Montoya, 2019. "Optimization of the Contracted Electric Power by Means of Genetic Algorithms," Energies, MDPI, vol. 12(7), pages 1-13, April.
    7. Hafiz Abdul Muqeet & Rehan Liaqat & Mohsin Jamil & Asharf Ali Khan, 2023. "A State-of-the-Art Review of Smart Energy Systems and Their Management in a Smart Grid Environment," Energies, MDPI, vol. 16(1), pages 1-23, January.
    8. Chen, Pengzhan & Liu, Mengchao & Chen, Chuanxi & Shang, Xin, 2019. "A battery management strategy in microgrid for personalized customer requirements," Energy, Elsevier, vol. 189(C).
    9. Golpîra, Hêriş & Khan, Syed Abdul Rehman, 2019. "A multi-objective risk-based robust optimization approach to energy management in smart residential buildings under combined demand and supply uncertainty," Energy, Elsevier, vol. 170(C), pages 1113-1129.
    10. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.
    11. Emilio Ghiani & Alessandro Serpi & Virginia Pilloni & Giuliana Sias & Marco Simone & Gianluca Marcialis & Giuliano Armano & Paolo Attilio Pegoraro, 2018. "A Multidisciplinary Approach for the Development of Smart Distribution Networks," Energies, MDPI, vol. 11(10), pages 1-29, September.
    12. Thomas Märzinger & Doris Österreicher, 2019. "Supporting the Smart Readiness Indicator—A Methodology to Integrate A Quantitative Assessment of the Load Shifting Potential of Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-22, May.
    13. Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
    14. Ritwik Haldar & Ashraf Hossain & Kirtan Gopal Panda, 2019. "Estimation of event loss duration for energy harvested wireless body sensor node," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 70(2), pages 231-244, February.
    15. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    16. Backe, Stian & Zwickl-Bernhard, Sebastian & Schwabeneder, Daniel & Auer, Hans & Korpås, Magnus & Tomasgard, Asgeir, 2022. "Impact of energy communities on the European electricity and heating system decarbonization pathway: Comparing local and global flexibility responses," Applied Energy, Elsevier, vol. 323(C).
    17. Oussama Tounekti & Antonio Ruiz-Martínez & Antonio F. Skarmeta-Gómez, 2021. "Users’ Evaluation of a New Web Browser Payment Interface for Facilitating the Use of Multiple Payment Systems," Sustainability, MDPI, vol. 13(9), pages 1-24, April.
    18. Rafal Dzikowski, 2020. "DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources," Energies, MDPI, vol. 13(14), pages 1-25, July.
    19. Yang-Hsin Fan, 2018. "Energy-Efficient Clusters for Object Tracking Networks," Energies, MDPI, vol. 11(8), pages 1-12, August.
    20. Raihan Ul Islam & Xhesika Ruci & Mohammad Shahadat Hossain & Karl Andersson & Ah-Lian Kor, 2019. "Capacity Management of Hyperscale Data Centers Using Predictive Modelling," Energies, MDPI, vol. 12(18), pages 1-22, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2628-:d:160112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.