IDEAS home Printed from https://ideas.repec.org/a/spr/telsys/v67y2018i3d10.1007_s11235-017-0356-6.html
   My bibliography  Save this article

Congestion avoidance in cognitive wireless sensor networks using TOPSIS and response surface methodology

Author

Listed:
  • M. Gholipour

    (Islamic Azad University)

  • A. T. Haghighat

    (Islamic Azad University)

  • M. R. Meybodi

    (Amirkabir University of Technology)

Abstract

Congestion in wireless sensor networks degrades the quality of the channel and network throughput. This leads to packet loss and energy dissipation. To cope with this problem, a two-stage cognitive network congestion control approach is presented in this paper. In the first stage of the proposed strategy, initially downstream nodes calculate their buffer occupancy ratio and estimate congestion degree in the MAC layer. Then, they send the estimated value to both network and transport layers of their upstream nodes. The network layer of the upstream node uses TOPSIS in order to rank all neighbors to select the best one as the next relay node. In the second stage, transport layer of the given node adjusts the transmission rate using an optimized regression analysis by RSM. Extensive simulations demonstrated that the proposed method not only decreases packet loss, but also significantly improves throughput and energy efficiency under different traffic conditions, especially in heavy traffic areas. Also, Tukey test is used to compare performance of algorithms as well as to demonstrate that the proposed method is significantly better than other methods.

Suggested Citation

  • M. Gholipour & A. T. Haghighat & M. R. Meybodi, 2018. "Congestion avoidance in cognitive wireless sensor networks using TOPSIS and response surface methodology," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 67(3), pages 519-537, March.
  • Handle: RePEc:spr:telsys:v:67:y:2018:i:3:d:10.1007_s11235-017-0356-6
    DOI: 10.1007/s11235-017-0356-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11235-017-0356-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11235-017-0356-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gaddafi Abdul-Salaam & Abdul Hanan Abdullah & Mohammad Hossein Anisi & Abdullah Gani & Abdulhameed Alelaiwi, 2016. "A comparative analysis of energy conservation approaches in hybrid wireless sensor networks data collection protocols," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 61(1), pages 159-179, January.
    2. Jack P. C. Kleijnen, 2015. "Response Surface Methodology," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 81-104, Springer.
    3. Georgiou, Stelios D. & Stylianou, Stella & Aggarwal, Manohar, 2014. "A class of composite designs for response surface methodology," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 1124-1133.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mahmoodi, S.R. & Mayer, M. & Besser, R.S., 2021. "Rapid and simple assembly of a thin microfluidic fuel cell stack by gas-assisted thermal bonding," Applied Energy, Elsevier, vol. 295(C).
    2. Shen-Tsu Wang, 2016. "Integrating grey sequencing with the genetic algorithm--immune algorithm to optimise touch panel cover glass polishing process parameter design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(16), pages 4882-4893, August.
    3. K. Venkata Rao & P. B. G. S. N. Murthy, 2018. "Modeling and optimization of tool vibration and surface roughness in boring of steel using RSM, ANN and SVM," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1533-1543, October.
    4. Yek, Peter Nai Yuh & Cheng, Yoke Wang & Liew, Rock Keey & Wan Mahari, Wan Adibah & Ong, Hwai Chyuan & Chen, Wei-Hsin & Peng, Wanxi & Park, Young-Kwon & Sonne, Christian & Kong, Sieng Huat & Tabatabaei, 2021. "Progress in the torrefaction technology for upgrading oil palm wastes to energy-dense biochar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    5. Qin, Caiyan & Kim, Joong Bae & Lee, Bong Jae, 2019. "Performance analysis of a direct-absorption parabolic-trough solar collector using plasmonic nanofluids," Renewable Energy, Elsevier, vol. 143(C), pages 24-33.
    6. Yu, Xunzhao & Zhu, Ling & Wang, Yan & Filev, Dimitar & Yao, Xin, 2022. "Internal combustion engine calibration using optimization algorithms," Applied Energy, Elsevier, vol. 305(C).
    7. Alireza Abdollahi & Karim Rejeb & Abderahman Rejeb & Mohamed M. Mostafa & Suhaiza Zailani, 2021. "Wireless Sensor Networks in Agriculture: Insights from Bibliometric Analysis," Sustainability, MDPI, vol. 13(21), pages 1-22, October.
    8. Kaushik, Lav Kumar & Muthukumar, P., 2020. "Thermal and economic performance assessments of waste cooking oil /kerosene blend operated pressure cook-stove with porous radiant burner," Energy, Elsevier, vol. 206(C).
    9. Damir Sostaric & Gyula Mester & Sanja Dorner, 2019. "Mobile ECG and SPO2 Chest Pain Subjective Indicators of Patient with GPS Location in Smart Cities," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 17(3-B), pages 629-639.
    10. Yaman, Hayri & Yesilyurt, Murat Kadir & Uslu, Samet, 2022. "Simultaneous optimization of multiple engine parameters of a 1-heptanol / gasoline fuel blends operated a port-fuel injection spark-ignition engine using response surface methodology approach," Energy, Elsevier, vol. 238(PC).
    11. Ma, Jiao & Feng, Shuo & Zhang, Zhikun & Wang, Zhuozhi & Kong, Wenwen & Yuan, Peng & Shen, Boxiong & Mu, Lan, 2022. "Effect of torrefaction pretreatment on the combustion characteristics of the biodried products derived from municipal organic wastes," Energy, Elsevier, vol. 239(PD).
    12. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    13. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    14. D. M. D. Rasika & Janak K. Vidanarachchi & Selma F. Luiz & Denise Rosane Perdomo Azeredo & Adriano G. Cruz & Chaminda Senaka Ranadheera, 2021. "Probiotic Delivery through Non-Dairy Plant-Based Food Matrices," Agriculture, MDPI, vol. 11(7), pages 1-23, June.
    15. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    16. Dugaria, Simone & Bortolato, Matteo & Del Col, Davide, 2018. "Modelling of a direct absorption solar receiver using carbon based nanofluids under concentrated solar radiation," Renewable Energy, Elsevier, vol. 128(PB), pages 495-508.
    17. Muhammad, Gul & Potchamyou Ngatcha, Ange Douglas & Lv, Yongkun & Xiong, Wenlong & El-Badry, Yaser A. & Asmatulu, Eylem & Xu, Jingliang & Alam, Md Asraful, 2022. "Enhanced biodiesel production from wet microalgae biomass optimized via response surface methodology and artificial neural network," Renewable Energy, Elsevier, vol. 184(C), pages 753-764.
    18. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.
    19. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Rahimi, A. & Yusaf, Talal & Mamat, Rizalman & Sidik, N.A.C. & Azmi, W.H., 2017. "Effects of biodiesel fuel obtained from Salvia macrosiphon oil (ultrasonic-assisted) on performance and emissions of diesel engine," Energy, Elsevier, vol. 131(C), pages 289-296.
    20. Peng Yang & Ting Zhang & Yuheng Zhang & Sophie Wang & Yingwen Liu, 2020. "Model of R134a Liquid–Vapor Two-Phase Heat Transfer Coefficient for Pulsating Flow Boiling in an Evaporator Using Response Surface Methodology," Energies, MDPI, vol. 13(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:telsys:v:67:y:2018:i:3:d:10.1007_s11235-017-0356-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.