IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v50y2023i1p358-382.html
   My bibliography  Save this article

Exact uniformly most powerful postselection confidence distributions

Author

Listed:
  • Andrea C. Garcia‐Angulo
  • Gerda Claeskens

Abstract

A conditioning on the event of having selected one model from a set of possibly misspecified normal linear regression models leads to the construction of uniformly optimal conditional confidence distributions. They can be used for valid postselection inference. The constructed conditional confidence distributions are finite sample exact and encompass all information regarding the focus parameter in the selected model. This includes the construction of optimal postselection confidence intervals at all significance levels and uniformly most powerful hypothesis tests.

Suggested Citation

  • Andrea C. Garcia‐Angulo & Gerda Claeskens, 2023. "Exact uniformly most powerful postselection confidence distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 50(1), pages 358-382, March.
  • Handle: RePEc:bla:scjsta:v:50:y:2023:i:1:p:358-382
    DOI: 10.1111/sjos.12581
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/sjos.12581
    Download Restriction: no

    File URL: https://libkey.io/10.1111/sjos.12581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, January.
    2. Xiaoying Tian & Joshua R Loftus & Jonathan E Taylor, 2018. "Selective inference with unknown variance via the square-root lasso," Biometrika, Biometrika Trust, vol. 105(4), pages 755-768.
    3. Hjort N.L. & Claeskens G., 2003. "Frequentist Model Average Estimators," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 879-899, January.
    4. Bo Henry Lindqvist & Gunnar Taraldsen, 2005. "Monte Carlo conditioning on a sufficient statistic," Biometrika, Biometrika Trust, vol. 92(2), pages 451-464, June.
    5. Claeskens,Gerda & Hjort,Nils Lid, 2008. "Model Selection and Model Averaging," Cambridge Books, Cambridge University Press, number 9780521852258, November.
    6. Min-ge Xie & Kesar Singh, 2013. "Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review," International Statistical Review, International Statistical Institute, vol. 81(1), pages 3-39, April.
    7. Paul Kabaila, 2009. "The Coverage Properties of Confidence Regions After Model Selection," International Statistical Review, International Statistical Institute, vol. 77(3), pages 405-414, December.
    8. Danijel Kivaranovic & Hannes Leeb, 2021. "On the Length of Post-Model-Selection Confidence Intervals Conditional on Polyhedral Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(534), pages 845-857, April.
    9. Tore Schweder & Nils Lid Hjort, 2002. "Confidence and Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(2), pages 309-332, June.
    10. Xiaoying Tian & Jonathan Taylor, 2017. "Asymptotics of Selective Inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(2), pages 480-499, June.
    11. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    12. Danilov, Dmitry & Magnus, J.R.Jan R., 2004. "On the harm that ignoring pretesting can cause," Journal of Econometrics, Elsevier, vol. 122(1), pages 27-46, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jelle J Goeman & Aldo Solari, 2024. "On selection and conditioning in multiple testing and selective inference," Biometrika, Biometrika Trust, vol. 111(2), pages 393-416.
    2. Pirenne, Sarah & Claeskens, Gerda, 2024. "Exact post-selection inference for adjusted R squared selection," Statistics & Probability Letters, Elsevier, vol. 211(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wan, Alan T.K. & Zhang, Xinyu & Wang, Shouyang, 2014. "Frequentist model averaging for multinomial and ordered logit models," International Journal of Forecasting, Elsevier, vol. 30(1), pages 118-128.
    2. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    3. Magnus, Jan R. & Wan, Alan T.K. & Zhang, Xinyu, 2011. "Weighted average least squares estimation with nonspherical disturbances and an application to the Hong Kong housing market," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1331-1341, March.
    4. Zhang, Xinyu & Wan, Alan T.K. & Zou, Guohua, 2013. "Model averaging by jackknife criterion in models with dependent data," Journal of Econometrics, Elsevier, vol. 174(2), pages 82-94.
    5. Tumala, Mohammed M & Olubusoye, Olusanya E & Yaaba, Baba N & Yaya, OlaOluwa S & Akanbi, Olawale B, 2017. "Forecasting Nigerian Inflation using Model Averaging methods: Modelling Frameworks to Central Banks," MPRA Paper 88754, University Library of Munich, Germany, revised Feb 2018.
    6. La Vecchia, Davide & Moor, Alban & Scaillet, Olivier, 2023. "A higher-order correct fast moving-average bootstrap for dependent data," Journal of Econometrics, Elsevier, vol. 235(1), pages 65-81.
    7. Hai Wang & Xinjie Chen & Nancy Flournoy, 2016. "The focused information criterion for varying-coefficient partially linear measurement error models," Statistical Papers, Springer, vol. 57(1), pages 99-113, March.
    8. Anwen Yin, 2024. "Predictive model averaging with parameter instability and heteroskedasticity," Bulletin of Economic Research, Wiley Blackwell, vol. 76(2), pages 418-442, April.
    9. Jing Zhou & Gerda Claeskens & Jelena Bradic, 2020. "Detangling robustness in high dimensions: composite versus model-averaged estimation," Papers 2006.07457, arXiv.org.
    10. De Luca, Giuseppe & Magnus, Jan R. & Peracchi, Franco, 2018. "Weighted-average least squares estimation of generalized linear models," Journal of Econometrics, Elsevier, vol. 204(1), pages 1-17.
    11. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    12. Xiaokang Luo & Tirthankar Dasgupta & Minge Xie & Regina Y. Liu, 2021. "Leveraging the Fisher randomization test using confidence distributions: Inference, combination and fusion learning," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 777-797, September.
    13. Jelle J Goeman & Aldo Solari, 2024. "On selection and conditioning in multiple testing and selective inference," Biometrika, Biometrika Trust, vol. 111(2), pages 393-416.
    14. Phillip Heiler & Jana Mareckova, 2019. "Shrinkage for Categorical Regressors," Papers 1901.01898, arXiv.org.
    15. John Copas & Shinto Eguchi, 2020. "Strong model dependence in statistical analysis: goodness of fit is not enough for model choice," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 329-352, April.
    16. Fletcher, David & Dillingham, Peter W., 2011. "Model-averaged confidence intervals for factorial experiments," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 3041-3048, November.
    17. Yuting Wei & Qihua Wang & Wei Liu, 2021. "Model averaging for linear models with responses missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 535-553, June.
    18. Katrin Wölfel & Christoph S. Weber, 2017. "Searching for the Fed’s reaction function," Empirical Economics, Springer, vol. 52(1), pages 191-227, February.
    19. Piero Veronese & Eugenio Melilli, 2021. "Confidence Distribution for the Ability Parameter of the Rasch Model," Psychometrika, Springer;The Psychometric Society, vol. 86(1), pages 131-166, March.
    20. Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:50:y:2023:i:1:p:358-382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.