IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v65y2024i6d10.1007_s00362-023-01491-4.html
   My bibliography  Save this article

Minimax weight learning for absorbing MDPs

Author

Listed:
  • Fengying Li

    (East China Normal University)

  • Yuqiang Li

    (East China Normal University)

  • Xianyi Wu

    (East China Normal University)

Abstract

Reinforcement learning policy evaluation problems are often modeled as finite or discounted/averaged infinite-horizon Markov Decision Processes (MDPs). In this paper, we study undiscounted off-policy evaluation for absorbing MDPs. Given the dataset consisting of i.i.d episodes under a given truncation level, we propose an algorithm (referred to as MWLA in the text) to directly estimate the expected return via the importance ratio of the state-action occupancy measure. The Mean Square Error (MSE) bound of the MWLA method is provided and the dependence of statistical errors on the data size and the truncation level are analyzed. The performance of the algorithm is illustrated by means of computational experiments under an episodic taxi environment

Suggested Citation

  • Fengying Li & Yuqiang Li & Xianyi Wu, 2024. "Minimax weight learning for absorbing MDPs," Statistical Papers, Springer, vol. 65(6), pages 3545-3582, August.
  • Handle: RePEc:spr:stpapr:v:65:y:2024:i:6:d:10.1007_s00362-023-01491-4
    DOI: 10.1007/s00362-023-01491-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01491-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01491-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitri P. Bertsekas & John N. Tsitsiklis, 1991. "An Analysis of Stochastic Shortest Path Problems," Mathematics of Operations Research, INFORMS, vol. 16(3), pages 580-595, August.
    2. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    3. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    4. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    2. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    3. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.
    4. Girma, Sourafel & Görg, Holger & Stepanok, Ignat, 2020. "Subsidies, spillovers and exports," Economics Letters, Elsevier, vol. 186(C).
    5. Kiran Tomlinson & Johan Ugander & Austin R. Benson, 2021. "Choice Set Confounding in Discrete Choice," Papers 2105.07959, arXiv.org, revised Aug 2021.
    6. William Rhodes, 2010. "Heterogeneous Treatment Effects: What Does a Regression Estimate?," Evaluation Review, , vol. 34(4), pages 334-361, August.
    7. Martin Huber, 2014. "Treatment Evaluation in the Presence of Sample Selection," Econometric Reviews, Taylor & Francis Journals, vol. 33(8), pages 869-905, November.
    8. Bryan S. Graham & Cristine Campos De Xavier Pinto & Daniel Egel, 2012. "Inverse Probability Tilting for Moment Condition Models with Missing Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 1053-1079.
    9. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    10. Chen, Jiafeng & Ritzwoller, David M., 2023. "Semiparametric estimation of long-term treatment effects," Journal of Econometrics, Elsevier, vol. 237(2).
    11. Ranjbar, Setareh & Salvati, Nicola & Pacini, Barbara, 2023. "Estimating heterogeneous causal effects in observational studies using small area predictors," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    12. Radice Rosalba & Ramsahai Roland & Grieve Richard & Kreif Noemi & Sadique Zia & Sekhon Jasjeet S., 2012. "Evaluating treatment effectiveness in patient subgroups: a comparison of propensity score methods with an automated matching approach," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-45, August.
    13. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    14. Dridi, Ichrak & Boughrara, Adel, 2023. "Flexible inflation targeting and stock market volatility: Evidence from emerging market economies," Economic Modelling, Elsevier, vol. 126(C).
    15. Zhexiao Lin & Fang Han, 2022. "On regression-adjusted imputation estimators of the average treatment effect," Papers 2212.05424, arXiv.org, revised Jan 2023.
    16. Alexander Buchholz & Vito Bellini & Giuseppe Di Benedetto & Yannik Stein & Matteo Ruffini & Fabian Moerchen, 2022. "Fair Effect Attribution in Parallel Online Experiments," Papers 2210.08338, arXiv.org.
    17. Essilfie, Felix Larry, 2018. "Varietal seed technology and household income of maize farmers: An application of the doubly robust model," Technology in Society, Elsevier, vol. 55(C), pages 85-91.
    18. van de Walle, Dominique & Mu, Ren, 2007. "Fungibility and the flypaper effect of project aid: Micro-evidence for Vietnam," Journal of Development Economics, Elsevier, vol. 84(2), pages 667-685, November.
    19. Gunther Bensch & Jörg Peters, 2013. "Alleviating Deforestation Pressures? Impacts of Improved Stove Dissemination on Charcoal Consumption in Urban Senegal," Land Economics, University of Wisconsin Press, vol. 89(4), pages 676-698.
    20. Katie Meara & Francesco Pastore & Allan Webster, 2020. "The gender pay gap in the USA: a matching study," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(1), pages 271-305, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:65:y:2024:i:6:d:10.1007_s00362-023-01491-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.