IDEAS home Printed from https://ideas.repec.org/a/bes/jnlasa/v96y2001mdecemberp1410-1423.html
   My bibliography  Save this article

Marginal Mean Models for Dynamic Regimes

Author

Listed:
  • Murphy S.A.
  • van der Laan M.J.
  • Robins J.M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Murphy S.A. & van der Laan M.J. & Robins J.M., 2001. "Marginal Mean Models for Dynamic Regimes," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1410-1423, December.
  • Handle: RePEc:bes:jnlasa:v:96:y:2001:m:december:p:1410-1423
    as

    Download full text from publisher

    File URL: http://www.ingentaconnect.com/content/asa/jasa/2001/00000096/00000456/art00022
    File Function: full text
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lucia Babino & Andrea Rotnitzky & James Robins, 2019. "Multiple robust estimation of marginal structural mean models for unconstrained outcomes," Biometrics, The International Biometric Society, vol. 75(1), pages 90-99, March.
    2. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    3. Neugebauer Romain & Schmittdiel Julie A. & van der Laan Mark J., 2016. "A Case Study of the Impact of Data-Adaptive Versus Model-Based Estimation of the Propensity Scores on Causal Inferences from Three Inverse Probability Weighting Estimators," The International Journal of Biostatistics, De Gruyter, vol. 12(1), pages 131-155, May.
    4. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    5. Chaffee Paul H. & van der Laan Mark J., 2012. "Targeted Maximum Likelihood Estimation for Dynamic Treatment Regimes in Sequentially Randomized Controlled Trials," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-32, June.
    6. Han, Sukjin, 2021. "Identification in nonparametric models for dynamic treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 132-147.
    7. Sun Hao & Ertefaie Ashkan & Lu Xin & Johnson Brent A., 2020. "Improved Doubly Robust Estimation in Marginal Mean Models for Dynamic Regimes," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 300-314, January.
    8. Matthew Blackwell & Anton Strezhnev, 2022. "Telescope matching for reducing model dependence in the estimation of the effects of time‐varying treatments: An application to negative advertising," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(1), pages 377-399, January.
    9. Markus Frölich & Martin Huber, 2014. "Treatment Evaluation With Multiple Outcome Periods Under Endogeneity and Attrition," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1697-1711, December.
    10. Xinyu Tang & Abdus S. Wahed, 2011. "Comparison of treatment regimes with adjustment for auxiliary variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2925-2938, March.
    11. Petersen Maya & Schwab Joshua & Gruber Susan & Blaser Nello & Schomaker Michael & van der Laan Mark, 2014. "Targeted Maximum Likelihood Estimation for Dynamic and Static Longitudinal Marginal Structural Working Models," Journal of Causal Inference, De Gruyter, vol. 2(2), pages 147-185, September.
    12. Yasuhiro Hagiwara & Tomohiro Shinozaki & Hirofumi Mukai & Yutaka Matsuyama, 2021. "Sensitivity analysis for subsequent treatments in confirmatory oncology clinical trials: A two‐stage stochastic dynamic treatment regime approach," Biometrics, The International Biometric Society, vol. 77(2), pages 702-714, June.
    13. Anders Bredahl Kock & Martin Thyrsgaard, 2017. "Optimal sequential treatment allocation," Papers 1705.09952, arXiv.org, revised Aug 2018.
    14. Hongming Pu & Bo Zhang, 2021. "Estimating optimal treatment rules with an instrumental variable: A partial identification learning approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(2), pages 318-345, April.
    15. Johnson, Brent A. & Boos, Dennis D., 2005. "A note on the use of kernel functions in weighted estimators," Statistics & Probability Letters, Elsevier, vol. 72(4), pages 345-355, May.
    16. Yuqian Zhang & Weijie Ji & Jelena Bradic, 2021. "Dynamic treatment effects: high-dimensional inference under model misspecification," Papers 2111.06818, arXiv.org, revised Jun 2023.
    17. Xiaofei Chen & Daniel F. Heitjan & Gerald Greil & Haekyung Jeon‐Slaughter, 2021. "Estimating the optimal timing of surgery from observational data," Biometrics, The International Biometric Society, vol. 77(2), pages 729-739, June.
    18. Yiwang Zhou & Peter X.K. Song & Haoda Fu, 2021. "Net benefit index: Assessing the influence of a biomarker for individualized treatment rules," Biometrics, The International Biometric Society, vol. 77(4), pages 1254-1264, December.
    19. Ashesh Rambachan & Neil Shephard, 2019. "Econometric analysis of potential outcomes time series: instruments, shocks, linearity and the causal response function," Papers 1903.01637, arXiv.org, revised Feb 2020.
    20. Orellana Liliana & Rotnitzky Andrea & Robins James M., 2010. "Dynamic Regime Marginal Structural Mean Models for Estimation of Optimal Dynamic Treatment Regimes, Part I: Main Content," The International Journal of Biostatistics, De Gruyter, vol. 6(2), pages 1-49, March.
    21. Shuxiao Chen & Bo Zhang, 2021. "Estimating and Improving Dynamic Treatment Regimes With a Time-Varying Instrumental Variable," Papers 2104.07822, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bes:jnlasa:v:96:y:2001:m:december:p:1410-1423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.amstat.org/publications/jasa/index.cfm?fuseaction=main .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.