IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v64y2023i4d10.1007_s00362-023-01425-0.html
   My bibliography  Save this article

Optimal subsampling design for polynomial regression in one covariate

Author

Listed:
  • Torsten Reuter

    (Otto von Guericke University Magdeburg)

  • Rainer Schwabe

    (Otto von Guericke University Magdeburg)

Abstract

Improvements in technology lead to increasing availability of large data sets which makes the need for data reduction and informative subsamples ever more important. In this paper we construct D-optimal subsampling designs for polynomial regression in one covariate for invariant distributions of the covariate. We study quadratic regression more closely for specific distributions. In particular we make statements on the shape of the resulting optimal subsampling designs and the effect of the subsample size on the design. To illustrate the advantage of the optimal subsampling designs we examine the efficiency of uniform random subsampling.

Suggested Citation

  • Torsten Reuter & Rainer Schwabe, 2023. "Optimal subsampling design for polynomial regression in one covariate," Statistical Papers, Springer, vol. 64(4), pages 1095-1117, August.
  • Handle: RePEc:spr:stpapr:v:64:y:2023:i:4:d:10.1007_s00362-023-01425-0
    DOI: 10.1007/s00362-023-01425-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-023-01425-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-023-01425-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. HaiYing Wang & Min Yang & John Stufken, 2019. "Information-Based Optimal Subdata Selection for Big Data Linear Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 393-405, January.
    2. Pronzato, Luc, 2004. "A minimax equivalence theorem for optimum bounded design measures," Statistics & Probability Letters, Elsevier, vol. 68(4), pages 325-331, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Oliveira, Nuno M.C., 2024. "Using hierarchical information-theoretic criteria to optimize subsampling of extensive datasets," LSE Research Online Documents on Economics 121641, London School of Economics and Political Science, LSE Library.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laura Deldossi & Elena Pesce & Chiara Tommasi, 2023. "Accounting for outliers in optimal subsampling methods," Statistical Papers, Springer, vol. 64(4), pages 1119-1135, August.
    2. Feifei Wang & Danyang Huang & Tianchen Gao & Shuyuan Wu & Hansheng Wang, 2022. "Sequential one‐step estimator by sub‐sampling for customer churn analysis with massive data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1753-1786, November.
    3. Su, Miaomiao & Wang, Ruoyu & Wang, Qihua, 2022. "A two-stage optimal subsampling estimation for missing data problems with large-scale data," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    4. Jun Yu & Jiaqi Liu & HaiYing Wang, 2023. "Information-based optimal subdata selection for non-linear models," Statistical Papers, Springer, vol. 64(4), pages 1069-1093, August.
    5. Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.
    6. Jun Yu & HaiYing Wang, 2022. "Subdata selection algorithm for linear model discrimination," Statistical Papers, Springer, vol. 63(6), pages 1883-1906, December.
    7. Duarte, Belmiro P.M. & Atkinson, Anthony C. & Oliveira, Nuno M.C., 2024. "Using hierarchical information-theoretic criteria to optimize subsampling of extensive datasets," LSE Research Online Documents on Economics 121641, London School of Economics and Political Science, LSE Library.
    8. Lu Lin & Feng Li, 2023. "Global debiased DC estimations for biased estimators via pro forma regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(2), pages 726-758, June.
    9. Tianzhen Wang & Haixiang Zhang, 2022. "Optimal subsampling for multiplicative regression with massive data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(4), pages 418-449, November.
    10. J. Lars Kirkby & Dang H. Nguyen & Duy Nguyen & Nhu N. Nguyen, 2022. "Inversion-free subsampling Newton’s method for large sample logistic regression," Statistical Papers, Springer, vol. 63(3), pages 943-963, June.
    11. Ziyang Wang & HaiYing Wang & Nalini Ravishanker, 2023. "Subsampling in Longitudinal Models," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.
    12. Amalan Mahendran & Helen Thompson & James M. McGree, 2023. "A model robust subsampling approach for Generalised Linear Models in big data settings," Statistical Papers, Springer, vol. 64(4), pages 1137-1157, August.
    13. Deng, Jiayi & Huang, Danyang & Ding, Yi & Zhu, Yingqiu & Jing, Bingyi & Zhang, Bo, 2024. "Subsampling spectral clustering for stochastic block models in large-scale networks," Computational Statistics & Data Analysis, Elsevier, vol. 189(C).
    14. Zhang, Haixiang & Wang, HaiYing, 2021. "Distributed subdata selection for big data via sampling-based approach," Computational Statistics & Data Analysis, Elsevier, vol. 153(C).
    15. Hector, Emily C. & Luo, Lan & Song, Peter X.-K., 2023. "Parallel-and-stream accelerator for computationally fast supervised learning," Computational Statistics & Data Analysis, Elsevier, vol. 177(C).
    16. Yuxin Sun & Wenjun Liu & Ye Tian, 2024. "Projection-Uniform Subsampling Methods for Big Data," Mathematics, MDPI, vol. 12(19), pages 1-16, September.
    17. Sokbae Lee & Serena Ng, 2020. "An Econometric Perspective on Algorithmic Subsampling," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 45-80, August.
    18. Lee, JooChul & Wang, HaiYing & Schifano, Elizabeth D., 2020. "Online updating method to correct for measurement error in big data streams," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    19. Lenka Filová & Radoslav Harman, 2020. "Ascent with quadratic assistance for the construction of exact experimental designs," Computational Statistics, Springer, vol. 35(2), pages 775-801, June.
    20. Xiaohui Yuan & Yong Li & Xiaogang Dong & Tianqing Liu, 2022. "Optimal subsampling for composite quantile regression in big data," Statistical Papers, Springer, vol. 63(5), pages 1649-1676, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:64:y:2023:i:4:d:10.1007_s00362-023-01425-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.