IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v63y2022i6d10.1007_s00362-022-01304-0.html
   My bibliography  Save this article

Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm

Author

Listed:
  • M. Revan Özkale

    (Çukurova University)

  • Atif Abbasi

    (Çukurova University
    The University of Azad Jammu and Kashmir Muzaffarabad)

Abstract

This article introduces an iterative restricted OK estimator in generalized linear models to address the dilemma of multicollinearity by imposing exact linear restrictions on the parameters. It is a versatile estimator, which contains maximum likelihood (ML), restricted ML, Liu, restricted Liu, ridge and restricted ridge estimators in generalized linear models. To figure out the performance of restricted OK estimator over its counterparts, various comparisons are given where the performance evaluation criterion is the scalar mean square error (SMSE). Thus, illustrations and simulation studies for Gamma and Poisson responses are conducted apart from theoretical comparisons to see the performance of the estimators in terms of estimated and predicted MSE. Besides, the optimization techniques are applied to find the values of tuning parameters by minimizing SMSE and by using genetic algorithm.

Suggested Citation

  • M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
  • Handle: RePEc:spr:stpapr:v:63:y:2022:i:6:d:10.1007_s00362-022-01304-0
    DOI: 10.1007/s00362-022-01304-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-022-01304-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-022-01304-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kibria, B. M. Golam & Månsson, Kristofer & Shukur, Ghazi, 2011. "A Ridge Regression estimator for the zero-inflated Poisson model," Working Paper Series in Economics and Institutions of Innovation 257, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    2. Nagarajah Varathan & Pushpakanthie Wijekoon, 2019. "Logistic Liu Estimator under stochastic linear restrictions," Statistical Papers, Springer, vol. 60(3), pages 945-962, June.
    3. Månsson, Kristofer & Shukur, Ghazi, 2011. "A Poisson ridge regression estimator," Economic Modelling, Elsevier, vol. 28(4), pages 1475-1481, July.
    4. Scrucca, Luca, 2013. "GA: A Package for Genetic Algorithms in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 53(i04).
    5. M. Revan Özkale & Hans Nyquist, 2021. "The stochastic restricted ridge estimator in generalized linear models," Statistical Papers, Springer, vol. 62(3), pages 1421-1460, June.
    6. Groß, Jürgen, 2003. "Restricted ridge estimation," Statistics & Probability Letters, Elsevier, vol. 65(1), pages 57-64, October.
    7. Delaney, Nancy Jo & Chatterjee, Sangit, 1986. "Use of the Bootstrap and Cross-validation in Ridge Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(2), pages 255-262, April.
    8. R. Fallah & M. Arashi & S. M. M. Tabatabaey, 2017. "On the ridge regression estimator with sub-space restriction," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(23), pages 11854-11865, December.
    9. Muhammad Qasim & B. M. G. Kibria & Kristofer Månsson & Pär Sjölander, 2020. "A new Poisson Liu Regression Estimator: method and application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(12), pages 2258-2271, September.
    10. Månsson, Kristofer & Kibria, B.M. Golam & Shukur, Ghazi, 2012. "On Liu estimators for the logit regression model," Economic Modelling, Elsevier, vol. 29(4), pages 1483-1488.
    11. Yalian Li & Hu Yang, 2010. "A new stochastic mixed ridge estimator in linear regression model," Statistical Papers, Springer, vol. 51(2), pages 315-323, June.
    12. Hans Nyquist, 1991. "Restricted Estimation of Generalized Linear Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 40(1), pages 133-141, March.
    13. S. le Cessie & J. C. van Houwelingen, 1992. "Ridge Estimators in Logistic Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 191-201, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Amin & Muhammad Qasim & Muhammad Amanullah & Saima Afzal, 2020. "Performance of some ridge estimators for the gamma regression model," Statistical Papers, Springer, vol. 61(3), pages 997-1026, June.
    2. M. Revan Özkale & Hans Nyquist, 2021. "The stochastic restricted ridge estimator in generalized linear models," Statistical Papers, Springer, vol. 62(3), pages 1421-1460, June.
    3. Månsson, Kristofer, 2012. "On ridge estimators for the negative binomial regression model," Economic Modelling, Elsevier, vol. 29(2), pages 178-184.
    4. Faisal M. Zahid & Shahla Ramzan, 2012. "Ordinal ridge regression with categorical predictors," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 161-171, March.
    5. N. H. Jadhav, 2020. "On linearized ridge logistic estimator in the presence of multicollinearity," Computational Statistics, Springer, vol. 35(2), pages 667-687, June.
    6. Tutz, Gerhard & Leitenstorfer, Florian, 2006. "Response shrinkage estimators in binary regression," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2878-2901, June.
    7. M. Arashi & T. Valizadeh, 2015. "Performance of Kibria’s methods in partial linear ridge regression model," Statistical Papers, Springer, vol. 56(1), pages 231-246, February.
    8. Faisal Zahid & Gerhard Tutz, 2013. "Ridge estimation for multinomial logit models with symmetric side constraints," Computational Statistics, Springer, vol. 28(3), pages 1017-1034, June.
    9. Özkale, M. Revan & Arıcan, Engin, 2015. "First-order r−d class estimator in binary logistic regression model," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 19-29.
    10. Akhil Rao & Francesca Letizia, 2022. "An integrated debris environment assessment model," Papers 2205.05205, arXiv.org.
    11. Bergeaud, Antonin & Raimbault, Juste, 2020. "An empirical analysis of the spatial variability of fuel prices in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 131-143.
    12. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    13. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    14. André Altmann & Michal Rosen-Zvi & Mattia Prosperi & Ehud Aharoni & Hani Neuvirth & Eugen Schülter & Joachim Büch & Daniel Struck & Yardena Peres & Francesca Incardona & Anders Sönnerborg & Rolf Kaise, 2008. "Comparison of Classifier Fusion Methods for Predicting Response to Anti HIV-1 Therapy," PLOS ONE, Public Library of Science, vol. 3(10), pages 1-9, October.
    15. Janns Alvaro Patiño-Saucedo & Paola Patricia Ariza-Colpas & Shariq Butt-Aziz & Marlon Alberto Piñeres-Melo & José Luis López-Ruiz & Roberto Cesar Morales-Ortega & Emiro De-la-hoz-Franco, 2022. "Predictive Model for Human Activity Recognition Based on Machine Learning and Feature Selection Techniques," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    16. Adewale F. Lukman & B. M. Golam Kibria & Cosmas K. Nziku & Muhammad Amin & Emmanuel T. Adewuyi & Rasha Farghali, 2023. "K-L Estimator: Dealing with Multicollinearity in the Logistic Regression Model," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
    17. František Dařena & Jan Přichystal, 2018. "Analysis of the Association between Topics in Online Documents and Stock Price Movements," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(6), pages 1431-1439.
    18. Lazzari, Florencia & Mor, Gerard & Cipriano, Jordi & Solsona, Francesc & Chemisana, Daniel & Guericke, Daniela, 2023. "Optimizing planning and operation of renewable energy communities with genetic algorithms," Applied Energy, Elsevier, vol. 338(C).
    19. repec:wyi:journl:002122 is not listed on IDEAS
    20. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    21. Castellares, Fredy & Patrício, Silvio C. & Lemonte, Artur J. & Queiroz, Bernardo L., 2020. "On closed-form expressions to Gompertz–Makeham life expectancy," Theoretical Population Biology, Elsevier, vol. 134(C), pages 53-60.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:63:y:2022:i:6:d:10.1007_s00362-022-01304-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.