IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v28y2011i4p1475-1481.html
   My bibliography  Save this article

A Poisson ridge regression estimator

Author

Listed:
  • Månsson, Kristofer
  • Shukur, Ghazi

Abstract

The standard statistical method for analyzing count data is the Poisson regression model, which is usually estimated using maximum likelihood (ML) method. The ML method is very sensitive to multicollinearity. Therefore, we present a new Poisson ridge regression estimator (PRR) as a remedy to the problem of instability of the traditional ML method. To investigate the performance of the PRR and the traditional ML approaches for estimating the parameters of the Poisson regression model, we calculate the mean squared error (MSE) using Monte Carlo simulations. The result from the simulation study shows that the PRR method outperforms the traditional ML estimator in all of the different situations evaluated in this paper.

Suggested Citation

  • Månsson, Kristofer & Shukur, Ghazi, 2011. "A Poisson ridge regression estimator," Economic Modelling, Elsevier, vol. 28(4), pages 1475-1481, July.
  • Handle: RePEc:eee:ecmode:v:28:y:2011:i:4:p:1475-1481
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999311000484
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Alkhamisi, M.A. & Shukur, Ghazi, 2007. "Developing Ridge Parameters for SUR Models," Working Paper Series in Economics and Institutions of Innovation 80, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    2. Månsson, Kristofer & Kibria, B. M. Golam & Sjölander, Pär & Shukur, Ghazi, 2011. "New Liu Estimators for the Poisson Regression Model: Method and Application," HUI Working Papers 51, HUI Research.
    3. Semra Türkan & Gamze Özel, 2016. "A new modified Jackknifed estimator for the Poisson regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1892-1905, August.
    4. Muhammad Amin & Muhammad Qasim & Muhammad Amanullah & Saima Afzal, 2020. "Performance of some ridge estimators for the gamma regression model," Statistical Papers, Springer, vol. 61(3), pages 997-1026, June.
    5. Akhil Rao & Francesca Letizia, 2022. "An integrated debris environment assessment model," Papers 2205.05205, arXiv.org.
    6. Månsson, Kristofer, 2012. "On ridge estimators for the negative binomial regression model," Economic Modelling, Elsevier, vol. 29(2), pages 178-184.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Alkhamisi, 2010. "Simulation study of new estimators combining the SUR ridge regression and the restricted least squares methodologies," Statistical Papers, Springer, vol. 51(3), pages 651-672, September.
    2. Muniz, Gisela & Kibria, B. M.Golam & Shukur, Ghazi, 2009. "On Developing Ridge Regression Parameters: A Graphical investigation," HUI Working Papers 29, HUI Research.
    3. Månsson, Kristofer & Shukur, Ghazi & Sjölander, Pär, 2012. "A New Asymmetric Interaction Ridge (AIR) Regression Method," HUI Working Papers 54, HUI Research.
    4. B. Kibria & Kristofer Månsson & Ghazi Shukur, 2012. "Performance of Some Logistic Ridge Regression Estimators," Computational Economics, Springer;Society for Computational Economics, vol. 40(4), pages 401-414, December.

    More about this item

    Keywords

    Poisson regression Maximum likelihood Ridge regression MSE Monte Carlo simulations Multicollinearity;

    JEL classification:

    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:28:y:2011:i:4:p:1475-1481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.