IDEAS home Printed from https://ideas.repec.org/a/bla/stanee/v78y2024i1p208-227.html
   My bibliography  Save this article

Poisson average maximum likelihood‐centered penalized estimator: A new estimator to better address multicollinearity in Poisson regression

Author

Listed:
  • Sheng Li
  • Wei Wang
  • Menghan Yao
  • Junyu Wang
  • Qianqian Du
  • Xuelin Li
  • Xinyue Tian
  • Jing Zeng
  • Ying Deng
  • Tao Zhang
  • Fei Yin
  • Yue Ma

Abstract

The Poisson ridge estimator (PRE) is a commonly used parameter estimation method to address multicollinearity in Poisson regression (PR). However, PRE shrinks the parameters toward zero, contradicting the real association. In such cases, PRE tends to become an insufficient solution for multicollinearity. In this work, we proposed a new estimator called the Poisson average maximum likelihood‐centered penalized estimator (PAMLPE), which shrinks the parameters toward the weighted average of the maximum likelihood estimators. We conducted a simulation study and case study to compare PAMLPE with existing estimators in terms of mean squared error (MSE) and predictive mean squared error (PMSE). These results suggest that PAMLPE can obtain smaller MSE and PMSE (i.e., more accurate estimates) than the Poisson ridge estimator, Poisson Liu estimator, and Poisson K‐L estimator when the true β$$ \beta $$s have the same sign and small variation. Therefore, we recommend using PAMLPE to address multicollinearity in PR when the signs of the true β$$ \beta $$s are known to be identical in advance.

Suggested Citation

  • Sheng Li & Wei Wang & Menghan Yao & Junyu Wang & Qianqian Du & Xuelin Li & Xinyue Tian & Jing Zeng & Ying Deng & Tao Zhang & Fei Yin & Yue Ma, 2024. "Poisson average maximum likelihood‐centered penalized estimator: A new estimator to better address multicollinearity in Poisson regression," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(1), pages 208-227, February.
  • Handle: RePEc:bla:stanee:v:78:y:2024:i:1:p:208-227
    DOI: 10.1111/stan.12313
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/stan.12313
    Download Restriction: no

    File URL: https://libkey.io/10.1111/stan.12313?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shrabanti Chowdhury & Saptarshi Chatterjee & Himel Mallick & Prithish Banerjee & Broti Garai, 2019. "Group regularization for zero-inflated poisson regression models with an application to insurance ratemaking," Journal of Applied Statistics, Taylor & Francis Journals, vol. 46(9), pages 1567-1581, July.
    2. Hosik Choi & Eunjung Song & Seung-sik Hwang & Woojoo Lee, 2018. "A modified generalized lasso algorithm to detect local spatial clusters for count data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(4), pages 537-563, October.
    3. Månsson, Kristofer & Shukur, Ghazi, 2011. "A Poisson ridge regression estimator," Economic Modelling, Elsevier, vol. 28(4), pages 1475-1481, July.
    4. Muhammad Qasim & B. M. G. Kibria & Kristofer Månsson & Pär Sjölander, 2020. "A new Poisson Liu Regression Estimator: method and application," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(12), pages 2258-2271, September.
    5. Semra Türkan & Gamze Özel, 2016. "A new modified Jackknifed estimator for the Poisson regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1892-1905, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    2. Månsson, Kristofer, 2012. "On ridge estimators for the negative binomial regression model," Economic Modelling, Elsevier, vol. 29(2), pages 178-184.
    3. Månsson, Kristofer & Kibria, B. M. Golam & Sjölander, Pär & Shukur, Ghazi, 2011. "New Liu Estimators for the Poisson Regression Model: Method and Application," HUI Working Papers 51, HUI Research.
    4. Marjan Qazvini, 2019. "On the Validation of Claims with Excess Zeros in Liability Insurance: A Comparative Study," Risks, MDPI, vol. 7(3), pages 1-17, June.
    5. Muhammad Amin & Muhammad Qasim & Muhammad Amanullah & Saima Afzal, 2020. "Performance of some ridge estimators for the gamma regression model," Statistical Papers, Springer, vol. 61(3), pages 997-1026, June.
    6. Semra Türkan & Gamze Özel, 2016. "A new modified Jackknifed estimator for the Poisson regression model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(10), pages 1892-1905, August.
    7. Adewale F. Lukman & Olayan Albalawi & Mohammad Arashi & Jeza Allohibi & Abdulmajeed Atiah Alharbi & Rasha A. Farghali, 2024. "Robust Negative Binomial Regression via the Kibria–Lukman Strategy: Methodology and Application," Mathematics, MDPI, vol. 12(18), pages 1-16, September.
    8. Akhil Rao & Francesca Letizia, 2022. "An integrated debris environment assessment model," Papers 2205.05205, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:78:y:2024:i:1:p:208-227. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0039-0402 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.