IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v56y2015i1p231-246.html
   My bibliography  Save this article

Performance of Kibria’s methods in partial linear ridge regression model

Author

Listed:
  • M. Arashi
  • T. Valizadeh

Abstract

This paper considers several estimators for estimating the biasing parameter in the study of partial linear models in the presence of multicollinearity. After exhibiting the MSE of ridge estimator based on eigenvalues of design matrix, a simulation study has been conducted to compare the performanceof the estimators. Based on the simulation studywe found that, increasing the correlation between the independent variables has positive effect on the MSE (signal-to-noise-ratio). However, increasingthe value of $$\rho $$ ρ has negative effect on MSE. When the sample size increases the MSE decreases even when the correlation between the independentvariables is large. An application of the proposed model is considered forhousing attributes to illustrate the performance ofdifferent estimators. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • M. Arashi & T. Valizadeh, 2015. "Performance of Kibria’s methods in partial linear ridge regression model," Statistical Papers, Springer, vol. 56(1), pages 231-246, February.
  • Handle: RePEc:spr:stpapr:v:56:y:2015:i:1:p:231-246
    DOI: 10.1007/s00362-014-0578-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-014-0578-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-014-0578-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Esra Akdeniz Duran & Fikri Akdeniz, 2012. "Efficiency of the modified jackknifed Liu-type estimator," Statistical Papers, Springer, vol. 53(2), pages 265-280, May.
    2. Månsson, Kristofer & Kibria, B.M. Golam & Shukur, Ghazi, 2012. "On Liu estimators for the logit regression model," Economic Modelling, Elsevier, vol. 29(4), pages 1483-1488.
    3. Yalian Li & Hu Yang, 2010. "A new stochastic mixed ridge estimator in linear regression model," Statistical Papers, Springer, vol. 51(2), pages 315-323, June.
    4. Roozbeh, M. & Arashi, M., 2013. "Feasible ridge estimator in partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 116(C), pages 35-44.
    5. Yalian Li & Hu Yang, 2012. "A new Liu-type estimator in linear regression model," Statistical Papers, Springer, vol. 53(2), pages 427-437, May.
    6. Eubank, R. L. & Kambour, E. L. & Kim, J. T. & Klipple, K. & Reese, C. S. & Schimek, M., 1998. "Estimation in partially linear models," Computational Statistics & Data Analysis, Elsevier, vol. 29(1), pages 27-34, November.
    7. A. Saleh & B. Golam Kibria, 2011. "On some ridge regression estimators: a nonparametric approach," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(3), pages 819-851.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Arashi & Mahdi Roozbeh, 2019. "Some improved estimation strategies in high-dimensional semiparametric regression models with application to riboflavin production data," Statistical Papers, Springer, vol. 60(3), pages 667-686, June.
    2. Hongchang Hu & Yu Zhang & Xiong Pan, 2016. "Asymptotic normality of DHD estimators in a partially linear model," Statistical Papers, Springer, vol. 57(3), pages 567-587, September.
    3. Sivarajah Arumairajan & Pushpakanthie Wijekoon, 2017. "The generalized preliminary test estimator when different sets of stochastic restrictions are available," Statistical Papers, Springer, vol. 58(3), pages 729-747, September.
    4. Hadi Emami, 2018. "Local influence for Liu estimators in semiparametric linear models," Statistical Papers, Springer, vol. 59(2), pages 529-544, June.
    5. Bahadır Yüzbaşı & S. Ejaz Ahmed & Dursun Aydın, 2020. "Ridge-type pretest and shrinkage estimations in partially linear models," Statistical Papers, Springer, vol. 61(2), pages 869-898, April.
    6. Roozbeh, Mahdi, 2016. "Robust ridge estimator in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 127-144.
    7. Roozbeh, Mahdi, 2018. "Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 45-61.
    8. Waleed B. Altukhaes & Mahdi Roozbeh & Nur A. Mohamed, 2024. "Robust Liu Estimator Used to Combat Some Challenges in Partially Linear Regression Model by Improving LTS Algorithm Using Semidefinite Programming," Mathematics, MDPI, vol. 12(17), pages 1-23, September.
    9. Nusrat Shaheen & Ismail Shah & Amani Almohaimeed & Sajid Ali & Hana N. Alqifari, 2023. "Some Modified Ridge Estimators for Handling the Multicollinearity Problem," Mathematics, MDPI, vol. 11(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Arashi & Mina Norouzirad & S. Ejaz Ahmed & Bahadır Yüzbaşı, 2018. "Rank-based Liu regression," Computational Statistics, Springer, vol. 33(3), pages 1525-1561, September.
    2. Roozbeh, Mahdi, 2018. "Optimal QR-based estimation in partially linear regression models with correlated errors using GCV criterion," Computational Statistics & Data Analysis, Elsevier, vol. 117(C), pages 45-61.
    3. M. Arashi & Mahdi Roozbeh, 2019. "Some improved estimation strategies in high-dimensional semiparametric regression models with application to riboflavin production data," Statistical Papers, Springer, vol. 60(3), pages 667-686, June.
    4. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    5. Fikri Akdeniz & Mahdi Roozbeh, 2019. "Generalized difference-based weighted mixed almost unbiased ridge estimator in partially linear models," Statistical Papers, Springer, vol. 60(5), pages 1717-1739, October.
    6. Bahadır Yüzbaşı & S. Ejaz Ahmed & Dursun Aydın, 2020. "Ridge-type pretest and shrinkage estimations in partially linear models," Statistical Papers, Springer, vol. 61(2), pages 869-898, April.
    7. Adewale F. Lukman & B. M. Golam Kibria & Cosmas K. Nziku & Muhammad Amin & Emmanuel T. Adewuyi & Rasha Farghali, 2023. "K-L Estimator: Dealing with Multicollinearity in the Logistic Regression Model," Mathematics, MDPI, vol. 11(2), pages 1-14, January.
    8. Akdeniz Duran, Esra & Härdle, Wolfgang Karl & Osipenko, Maria, 2012. "Difference based ridge and Liu type estimators in semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 164-175.
    9. Hongchang Hu & Weifu Hu & Xinxin Yu, 2021. "Pseudo-maximum likelihood estimators in linear regression models with fractional time series," Statistical Papers, Springer, vol. 62(2), pages 639-659, April.
    10. Yuejin Zhou & Yebin Cheng & Wenlin Dai & Tiejun Tong, 2018. "Optimal difference-based estimation for partially linear models," Computational Statistics, Springer, vol. 33(2), pages 863-885, June.
    11. Jing Li & Xueyan Li, 2019. "Liu Estimator in Semiparametric Partially Linear Varying Coefficient Models," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 8(6), pages 1-69, November.
    12. F. Ghapani & A. R. Rasekh & B. Babadi, 2018. "The weighted ridge estimator in stochastic restricted linear measurement error models," Statistical Papers, Springer, vol. 59(2), pages 709-723, June.
    13. Sivarajah Arumairajan & Pushpakanthie Wijekoon, 2017. "The generalized preliminary test estimator when different sets of stochastic restrictions are available," Statistical Papers, Springer, vol. 58(3), pages 729-747, September.
    14. Iqra Babar & Hamdi Ayed & Sohail Chand & Muhammad Suhail & Yousaf Ali Khan & Riadh Marzouki, 2021. "Modified Liu estimators in the linear regression model: An application to Tobacco data," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-13, November.
    15. Saleh, A.K.Md. Ehsanes & Shalabh,, 2014. "A ridge regression estimation approach to the measurement error model," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 68-84.
    16. Roozbeh, Mahdi, 2016. "Robust ridge estimator in restricted semiparametric regression models," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 127-144.
    17. Mohamed R. Abonazel & Rasha A. Farghali, 2019. "Liu-Type Multinomial Logistic Estimator," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(2), pages 203-225, December.
    18. Murat Genç, 2022. "A new double-regularized regression using Liu and lasso regularization," Computational Statistics, Springer, vol. 37(1), pages 159-227, March.
    19. M. Nooi Asl & H. Bevrani & R. Arabi Belaghi & K. Mansson, 2021. "Ridge-type shrinkage estimators in generalized linear models with an application to prostate cancer data," Statistical Papers, Springer, vol. 62(2), pages 1043-1085, April.
    20. N. H. Jadhav, 2020. "On linearized ridge logistic estimator in the presence of multicollinearity," Computational Statistics, Springer, vol. 35(2), pages 667-687, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:56:y:2015:i:1:p:231-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.