Tests for the explanatory power of latent factors
Author
Abstract
Suggested Citation
DOI: 10.1007/s00362-020-01216-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chen, Mingjing & Yan, Jingzhou, 2019. "Unbiased CCE estimator for Interactive Fixed Effects panels," Economics Letters, Elsevier, vol. 175(C), pages 1-4.
- Karabiyik, Hande & Reese, Simon & Westerlund, Joakim, 2017. "On the role of the rank condition in CCE estimation of factor-augmented panel regressions," Journal of Econometrics, Elsevier, vol. 197(1), pages 60-64.
- M. Hashem Pesaran, 2006.
"Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure,"
Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
- M. Hashem Pesaran, 2004. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," CESifo Working Paper Series 1331, CESifo.
- Gonçalves, Sílvia & Perron, Benoit, 2014.
"Bootstrapping factor-augmented regression models,"
Journal of Econometrics, Elsevier, vol. 182(1), pages 156-173.
- Silvia Gonçalves & Benoit Perron, 2012. "Bootstrapping factor-augmented regression models," CIRANO Working Papers 2012s-12, CIRANO.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
- Chudik, Alexander & Pesaran, M. Hashem, 2015.
"Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors,"
Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
- Pesaran, Hashem & Chudik, Alexander, 2013. "Common Correlated Effects Estimation of Heterogeneous Dynamic Panel Data Models with Weakly Exogenous Regressors," Cambridge Working Papers in Economics 1317, Faculty of Economics, University of Cambridge.
- Alexander Chudik & M. Hashem Pesaran, 2013. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Globalization Institute Working Papers 146, Federal Reserve Bank of Dallas.
- Alexander Chudik & M. Hashem Pesaran, 2013. "Common Correlated Effects Estimation of Heterogeneous Dynamic Panel Data Models with Weakly Exogenous Regressors," CESifo Working Paper Series 4232, CESifo.
- Mingjing Chen, 2020. "A self-reliant projected information criterion for the number of factors," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(10), pages 2466-2484, May.
- Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Westerlund, Joakim & Urbain, Jean-Pierre, 2015. "Cross-sectional averages versus principal components," Journal of Econometrics, Elsevier, vol. 185(2), pages 372-377.
- Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
- Jushan Bai & Serena Ng, 2006. "Confidence Intervals for Diffusion Index Forecasts and Inference for Factor-Augmented Regressions," Econometrica, Econometric Society, vol. 74(4), pages 1133-1150, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hande Karabiyik & Joakim Westerlund, 2021. "Forecasting using cross-section average–augmented time series regressions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 315-333.
- Hansen, Christian & Liao, Yuan, 2019.
"The Factor-Lasso And K-Step Bootstrap Approach For Inference In High-Dimensional Economic Applications,"
Econometric Theory, Cambridge University Press, vol. 35(3), pages 465-509, June.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Papers 1611.09420, arXiv.org, revised Dec 2016.
- Christian Hansen & Yuan Liao, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," Departmental Working Papers 201610, Rutgers University, Department of Economics.
- Hansen, Christian & Liao, Yuan, 2016. "The Factor-Lasso and K-Step Bootstrap Approach for Inference in High-Dimensional Economic Applications," MPRA Paper 75313, University Library of Munich, Germany.
- Catherine Doz & Peter Fuleky, 2019.
"Dynamic Factor Models,"
Working Papers
2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," PSE-Ecole d'économie de Paris (Postprint) halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," PSE Working Papers halshs-02262202, HAL.
- Catherine Doz & Peter Fuleky, 2020. "Dynamic Factor Models," Post-Print halshs-02491811, HAL.
- Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
- De Vos, Ignace & Stauskas, Ovidijus, 2024. "Cross-section bootstrap for CCE regressions," Journal of Econometrics, Elsevier, vol. 240(1).
- Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
- Yoshimasa Uematsu & Takashi Yamagata, 2019.
"Estimation of Weak Factor Models,"
DSSR Discussion Papers
96, Graduate School of Economics and Management, Tohoku University.
- Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053, Institute of Social and Economic Research, Osaka University.
- Francisco Corona & Pilar Poncela & Esther Ruiz, 2017.
"Determining the number of factors after stationary univariate transformations,"
Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
- Corona, Francisco & Poncela, Maria Pilar, 2016. "Determining the number of factors after stationary univariate transformations," DES - Working Papers. Statistics and Econometrics. WS ws1602, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Akgun, Oguzhan & Pirotte, Alain & Urga, Giovanni, 2020.
"Forecasting using heterogeneous panels with cross-sectional dependence,"
International Journal of Forecasting, Elsevier, vol. 36(4), pages 1211-1227.
- Oguzhan Akgun & Alain Pirotte & Giovanni Urga, 2020. "Forecasting using heterogeneous panels with cross-sectional dependence," Post-Print hal-04120413, HAL.
- Liang Chen & Juan J. Dolado & Jesús Gonzalo, 2021.
"Quantile Factor Models,"
Econometrica, Econometric Society, vol. 89(2), pages 875-910, March.
- Chen, Liang, 2017. "Quantile Factor Models," UC3M Working papers. Economics 25299, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Chen, Liang & Dolado, Juan J. & Gonzalo, Jesús, 2020. "Quantile Factor Models," IZA Discussion Papers 13870, Institute of Labor Economics (IZA).
- Liang Chen & Juan Jose Dolado & Jesus Gonzalo, 2019. "Quantile Factor Models," Papers 1911.02173, arXiv.org, revised Sep 2020.
- Dolado, Juan J & Chen, Liang & Gonzalo, Jesus, 2018. "Quantile Factor Models," CEPR Discussion Papers 12716, C.E.P.R. Discussion Papers.
- Hong, Shengjie & Su, Liangjun & Jiang, Tao, 2023. "Profile GMM estimation of panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 927-948.
- Jörg Breitung & In Choi, 2013.
"Factor models,"
Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 11, pages 249-265,
Edward Elgar Publishing.
- In Choi & Jorg Breitung, 2011. "Factor models," Working Papers 1121, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy), revised Dec 2011.
- Ignace De Vos & Gerdie Everaert & Vasilis Sarafidis, 2021.
"A method for evaluating the rank condition for CCE estimators,"
Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium
21/1013, Ghent University, Faculty of Economics and Business Administration.
- De Vos, Ignace & Everaert, Gerdie & Sarafidis, Vasilis, 2021. "A method for evaluating the rank condition for CCE estimators," MPRA Paper 112305, University Library of Munich, Germany, revised 09 Mar 2022.
- Artūras Juodis, 2022. "A regularization approach to common correlated effects estimation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 788-810, June.
- Joakim Westerlund, 2020. "A cross‐section average‐based principal components approach for fixed‐T panels," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(6), pages 776-785, September.
- Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2023.
"IV estimation of spatial dynamic panels with interactive effects: large sample theory and an application on bank attitude towards risk,"
The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 124-146.
- Cui, Guowei & Sarafidis, Vasilis & Yamagata, Takashi, 2020. "IV Estimation of Spatial Dynamic Panels with Interactive Effects: Large Sample Theory and an Application on Bank Attitude Toward Risk," MPRA Paper 102488, University Library of Munich, Germany.
- Stauskas, Ovidijus & De Vos, Ignace, 2024. "Handling Distinct Correlated Effects with CCE," MPRA Paper 120194, University Library of Munich, Germany.
- Cheng, Xu & Hansen, Bruce E., 2015.
"Forecasting with factor-augmented regression: A frequentist model averaging approach,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 280-293.
- Xu Cheng & Bruce E. Hansen, 2012. "Forecasting with Factor-Augmented Regression: A Frequentist Model Averaging Approach," PIER Working Paper Archive 12-046, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Li, Xingyu & Shen, Yan & Zhou, Qiankun, 2024.
"Confidence intervals of treatment effects in panel data models with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 240(1).
- Xingyu Li & Yan Shen & Qiankun Zhou, 2022. "Confidence Intervals of Treatment Effects in Panel Data Models with Interactive Fixed Effects," Papers 2202.12078, arXiv.org.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014.
"Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
- Barigozzi, Matteo & Conti, Antonio & Luciani, Matteo, 2012. "Do Euro area countries respond asymmetrically to the common monetary policy?," LSE Research Online Documents on Economics 43344, London School of Economics and Political Science, LSE Library.
- Matteo Luciani & Antoniomaria Conti & Matteo Barigozzi, 2013. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," ULB Institutional Repository 2013/153330, ULB -- Universite Libre de Bruxelles.
- Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2013. "Do euro area countries respond asymmetrically to the common monetary policy?," Temi di discussione (Economic working papers) 923, Bank of Italy, Economic Research and International Relations Area.
More about this item
Keywords
Common correlated effects; Principal component analysis; Factors; Wald; Profile least squares; Profile likelihood ratio;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:6:d:10.1007_s00362-020-01216-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.