IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v197y2017i1p60-64.html
   My bibliography  Save this article

On the role of the rank condition in CCE estimation of factor-augmented panel regressions

Author

Listed:
  • Karabiyik, Hande
  • Reese, Simon
  • Westerlund, Joakim

Abstract

A popular approach to factor-augmented panel regressions is the common correlated effects (CCE) estimator of Pesaran (2006). This paper points to a problem with the CCE approach that appears in the empirically relevant case when the number of factors is strictly less than the number of observables used in their estimation. Specifically, the use of too many observables causes the second moment matrix of the estimated factors to become asymptotically singular, an issue that has not yet been appropriately accounted for. The purpose of the present paper is to fill this gap in the literature.

Suggested Citation

  • Karabiyik, Hande & Reese, Simon & Westerlund, Joakim, 2017. "On the role of the rank condition in CCE estimation of factor-augmented panel regressions," Journal of Econometrics, Elsevier, vol. 197(1), pages 60-64.
  • Handle: RePEc:eee:econom:v:197:y:2017:i:1:p:60-64
    DOI: 10.1016/j.jeconom.2016.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407616302007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2016.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrews, Donald W. K., 1987. "Asymptotic Results for Generalized Wald Tests," Econometric Theory, Cambridge University Press, vol. 3(3), pages 348-358, June.
    2. Kapetanios, G. & Pesaran, M. Hashem & Yamagata, T., 2011. "Panels with non-stationary multifactor error structures," Journal of Econometrics, Elsevier, vol. 160(2), pages 326-348, February.
    3. Pesaran, M. Hashem & Vanessa Smith, L. & Yamagata, Takashi, 2013. "Panel unit root tests in the presence of a multifactor error structure," Journal of Econometrics, Elsevier, vol. 175(2), pages 94-115.
    4. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    5. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    6. Chang, Yoosoon & Phillips, Peter C.B., 1995. "Time Series Regression with Mixtures of Integrated Processes," Econometric Theory, Cambridge University Press, vol. 11(5), pages 1033-1094, October.
    7. Westerlund, Joakim & Urbain, Jean-Pierre, 2015. "Cross-sectional averages versus principal components," Journal of Econometrics, Elsevier, vol. 185(2), pages 372-377.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anindya Banerjee & Josep Lluís Carrion-i-Silvestre, 2017. "Testing for Panel Cointegration Using Common Correlated Effects Estimators," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(4), pages 610-636, July.
    2. Juodis, Artūras & Karabiyik, Hande & Westerlund, Joakim, 2021. "On the robustness of the pooled CCE estimator," Journal of Econometrics, Elsevier, vol. 220(2), pages 325-348.
    3. Shou-Yung Yin & Chu-An Liu & Chang-Ching Lin, 2021. "Focused Information Criterion and Model Averaging for Large Panels With a Multifactor Error Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 54-68, January.
    4. Ignace De Vos & Gerdie Everaert, 2016. "Bias-Corrected Common Correlated Effects Pooled Estimation In Homogeneous Dynamic Panels," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 16/920, Ghent University, Faculty of Economics and Business Administration.
    5. Cem Ertur & Antonio Musolesi, 2017. "Weak and Strong Cross‐Sectional Dependence: A Panel Data Analysis of International Technology Diffusion," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 477-503, April.
    6. Olivier Damette & Mathilde Maurel & Michael A. Stemmer, 2016. "What does it take to grow out of recession? An error-correction approach towards growth convergence of European and transition countries," Post-Print halshs-01318131, HAL.
    7. Chudik, Alexander & Pesaran, M. Hashem, 2015. "Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors," Journal of Econometrics, Elsevier, vol. 188(2), pages 393-420.
    8. Gioldasis, Georgios & Musolesi, Antonio & Simioni, Michel, 2023. "Interactive R&D spillovers: An estimation strategy based on forecasting-driven model selection," International Journal of Forecasting, Elsevier, vol. 39(1), pages 144-169.
    9. Markus Eberhardt & Francis Teal, 2008. "Modeling Technology and Technological Change in Manufacturing: How do Countries Differ?," CSAE Working Paper Series 2008-12, Centre for the Study of African Economies, University of Oxford.
    10. M. Ege Yazgan & Serda Selin Ozturk, 2019. "Real Exchange Rates and the Balance of Trade: Does the J-curve Effect Really Hold?," Open Economies Review, Springer, vol. 30(2), pages 343-373, April.
    11. Claire Giordano, 2021. "How frequent a BEER? Assessing the impact of data frequency on real exchange rate misalignment estimation," Scottish Journal of Political Economy, Scottish Economic Society, vol. 68(3), pages 365-404, July.
    12. Markus Eberhardt & Christian Helmers & Hubert Strauss, 2013. "Do Spillovers Matter When Estimating Private Returns to R&D?," The Review of Economics and Statistics, MIT Press, vol. 95(2), pages 436-448, May.
    13. Norkutė, Milda & Westerlund, Joakim, 2021. "The factor analytical approach in near unit root interactive effects panels," Journal of Econometrics, Elsevier, vol. 221(2), pages 569-590.
    14. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2021. "Interactive R&D Spillovers: An estimation strategy based on forecasting-driven model selection," SEEDS Working Papers 0621, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2021.
    15. Evan Totty, 2017. "The Effect Of Minimum Wages On Employment: A Factor Model Approach," Economic Inquiry, Western Economic Association International, vol. 55(4), pages 1712-1737, October.
    16. Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2021. "Interactive R&D Spillovers: an estimation strategy based on forecasting-driven model selection," Working Papers hal-03224910, HAL.
    17. George Kapetanios & Laura Serlenga & Yongcheol Shin, 2023. "Testing for correlation between the regressors and factor loadings in heterogeneous panels with interactive effects," Empirical Economics, Springer, vol. 64(6), pages 2611-2659, June.
    18. R. Golinelli & I. Mammi & A. Musolesi, 2018. "Parameter heterogeneity, persistence and cross-sectional dependence: new insights on fiscal policy reaction functions for the Euro area," Working Papers wp1120, Dipartimento Scienze Economiche, Universita' di Bologna.
    19. Daniel M. Bernhofen & Markus Eberhardt & Jianan Li & Stephen Morgan, 2015. "Assessing Market (Dis)Integration in Early Modern China and Europe," CESifo Working Paper Series 5580, CESifo.
    20. Alharbi, Samar S. & Al Mamun, Md & Boubaker, Sabri & Rizvi, Syed Kumail Abbas, 2023. "Green finance and renewable energy: A worldwide evidence," Energy Economics, Elsevier, vol. 118(C).

    More about this item

    Keywords

    Factor-augmented panel regression; CCE estimation; Moore–Penrose inverse;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C36 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Instrumental Variables (IV) Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:197:y:2017:i:1:p:60-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.