IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v45y2018i13p2429-2454.html
   My bibliography  Save this article

Testing symmetry based on empirical likelihood

Author

Listed:
  • Jun Zhang
  • Jing Zhang
  • Xuehu Zhu
  • Tao Lu

Abstract

In this paper, we propose a general kth correlation coefficient between the density function and distribution function of a continuous variable as a measure of symmetry and asymmetry. We first propose a root-n moment-based estimator of the kth correlation coefficient and present its asymptotic results. Next, we consider statistical inference of the kth correlation coefficient by using the empirical likelihood (EL) method. The EL statistic is shown to be asymptotically a standard chi-squared distribution. Last, we propose a residual-based estimator of the kth correlation coefficient for a parametric regression model to test whether the density function of the true model error is symmetric or not. We present the asymptotic results of the residual-based kth correlation coefficient estimator and also construct its EL-based confidence intervals. Simulation studies are conducted to examine the performance of the proposed estimators, and we also use our proposed estimators to analyze the air quality dataset.

Suggested Citation

  • Jun Zhang & Jing Zhang & Xuehu Zhu & Tao Lu, 2018. "Testing symmetry based on empirical likelihood," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(13), pages 2429-2454, October.
  • Handle: RePEc:taf:japsta:v:45:y:2018:i:13:p:2429-2454
    DOI: 10.1080/02664763.2017.1421917
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2017.1421917
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2017.1421917?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Zhang & Yiping Yang & Gaorong Li, 2020. "Logarithmic calibration for multiplicative distortion measurement errors regression models," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(4), pages 462-488, November.
    2. Andreas Eberl & Bernhard Klar, 2021. "A note on a measure of asymmetry," Statistical Papers, Springer, vol. 62(3), pages 1483-1497, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:45:y:2018:i:13:p:2429-2454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.