IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i9p1903-1918.html
   My bibliography  Save this article

Effectiveness of a random compound noise strategy for robust parameter design

Author

Listed:
  • Shun Matsuura

Abstract

Robust parameter design has been widely used to improve the quality of products and processes. Although a product array, in which an orthogonal array for control factors is crossed with an orthogonal array for noise factors, is commonly used for parameter design experiments, this may lead to an unacceptably large number of experimental runs. The compound noise strategy proposed by Taguchi [30] can be used to reduce the number of experimental runs. In this strategy, a compound noise factor is formed based on the directionality of the effects of noise factors. However, the directionality is usually unknown in practice. Recently, Singh et al. [28] proposed a random compound noise strategy, in which a compound noise factor is formed by randomly selecting a setting of the levels of noise factors. The present paper evaluates the random compound noise strategy in terms of the precision of the estimators of the response mean and the response variance. In addition, the variances of the estimators in the random compound noise strategy are compared with those in the n -replication design. The random compound noise strategy is shown to have smaller variances of the estimators than the 2-replication design, especially when the control-by-noise-interactions are strong.

Suggested Citation

  • Shun Matsuura, 2014. "Effectiveness of a random compound noise strategy for robust parameter design," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1903-1918, September.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:9:p:1903-1918
    DOI: 10.1080/02664763.2014.898130
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.898130
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.898130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eileen O'Donnell & G. Geoffrey Vining, 1997. "Mean squared error of prediction approach to the analysis of a combined array," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(6), pages 733-746.
    2. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    3. Thaddeus Tarpey, 1997. "Estimating principal points of univariate distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 24(5), pages 499-512.
    4. Guillermo Miro-Quesada & Enrique Del Castillo & John Peterson, 2004. "A Bayesian Approach for Multiple Response Surface Optimization in the Presence of Noise Variables," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(3), pages 251-270.
    5. X. Shirley Hou, 2002. "On the use of compound noise factor in parameter design experiments," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 18(3), pages 225-243, July.
    6. P. Angelopoulos & C. Koukouvinos, 2008. "Some robust parameter designs from orthogonal arrays," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(12), pages 1399-1408.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Santanu Chakraborty & Mrinal Kanti Roychowdhury & Josef Sifuentes, 2021. "High Precision Numerical Computation of Principal Points for Univariate Distributions," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 558-584, November.
    2. Shun Matsuura & Thaddeus Tarpey, 2020. "Optimal principal points estimators of multivariate distributions of location-scale and location-scale-rotation families," Statistical Papers, Springer, vol. 61(4), pages 1629-1643, August.
    3. Long-Hao Xu & Kai-Tai Fang & Ping He, 2022. "Properties and generation of representative points of the exponential distribution," Statistical Papers, Springer, vol. 63(1), pages 197-223, February.
    4. Matsuura, Shun & Kurata, Hiroshi, 2010. "A principal subspace theorem for 2-principal points of general location mixtures of spherically symmetric distributions," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1863-1869, December.
    5. Ouyang, Linhan & Ma, Yizhong & Wang, Jianjun & Tu, Yiliu, 2017. "A new loss function for multi-response optimization with model parameter uncertainty and implementation errors," European Journal of Operational Research, Elsevier, vol. 258(2), pages 552-563.
    6. Wang, Jianjun & Ma, Yizhong & Ouyang, Linhan & Tu, Yiliu, 2016. "A new Bayesian approach to multi-response surface optimization integrating loss function with posterior probability," European Journal of Operational Research, Elsevier, vol. 249(1), pages 231-237.
    7. R Rajagopal & E del Castillo, 2007. "A Bayesian approach for multiple criteria decision making with applications in Design for Six Sigma," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(6), pages 779-790, June.
    8. Shun Matsuura & Hiroshi Kurata, 2014. "Principal points for an allometric extension model," Statistical Papers, Springer, vol. 55(3), pages 853-870, August.
    9. Meng-Leong How & Yong Jiet Chan & Sin-Mei Cheah, 2020. "Predictive Insights for Improving the Resilience of Global Food Security Using Artificial Intelligence," Sustainability, MDPI, vol. 12(15), pages 1-14, August.
    10. Matsuura, Shun & Kurata, Hiroshi, 2011. "Principal points of a multivariate mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 102(2), pages 213-224, February.
    11. Tarpey, Thaddeus & Loperfido, Nicola, 2015. "Self-consistency and a generalized principal subspace theorem," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 27-37.
    12. Davidov, Ori, 2005. "When is the mean self-consistent?," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 295-310, October.
    13. Bali, Juan Lucas & Boente, Graciela, 2009. "Principal points and elliptical distributions from the multivariate setting to the functional case," Statistics & Probability Letters, Elsevier, vol. 79(17), pages 1858-1865, September.
    14. Thaddeus Tarpey, 2007. "A parametric k-means algorithm," Computational Statistics, Springer, vol. 22(1), pages 71-89, April.
    15. Long-Hao Xu & Yinan Li & Kai-Tai Fang, 2024. "The resampling method via representative points," Statistical Papers, Springer, vol. 65(6), pages 3621-3649, August.
    16. Loperfido, Nicola, 2014. "A note on the fourth cumulant of a finite mixture distribution," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 386-394.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:9:p:1903-1918. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.