IDEAS home Printed from https://ideas.repec.org/a/jss/jstsof/v012i02.html
   My bibliography  Save this article

Simreg: a Software Including Some New Developments in Multiple Comparison and Simultaneous Confidence Bands for Linear Regression Models

Author

Listed:
  • Jamshidian, Mortaza
  • Liu, Wei
  • Zhang, Ying
  • Jamishidian, Farid

Abstract

The problem of simultaneous inference and multiple comparison for comparing means of k( ≥ 3) populations has been long studied in the statistics literature and is widely available in statistics literature. However to-date, the problem of multiple comparison of regression models has not found its way to the software. It is only recently that the computational aspects of this problem have been resolved in a general setting. SimReg employs this new methodology and provides users with software for multiple regression of several regression models. The comparisons can be among any set of pairs, and moreover any number of predictors can be included in the model. More importantly predictors can be constrained to their natural boundaries, if known. Computational methods for the problem of simultaneous confidence bands when predictors are constrained to intervals has also recently been addressed. SimReg utilizes this recent development to offer simultaneous confidence bands for regression models with any number of predictor variables. Again, the predictors can be constrained to their natural boundaries which results in narrower bands, as compared to the case where no restriction is imposed. A by-product of these confidence bands is a new method for comparing two regression surfaces, that is more informative than the usual partial F test.

Suggested Citation

  • Jamshidian, Mortaza & Liu, Wei & Zhang, Ying & Jamishidian, Farid, 2005. "Simreg: a Software Including Some New Developments in Multiple Comparison and Simultaneous Confidence Bands for Linear Regression Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i02).
  • Handle: RePEc:jss:jstsof:v:012:i02
    DOI: http://hdl.handle.net/10.18637/jss.v012.i02
    as

    Download full text from publisher

    File URL: https://www.jstatsoft.org/index.php/jss/article/view/v012i02/v12i02.pdf
    Download Restriction: no

    File URL: https://www.jstatsoft.org/index.php/jss/article/downloadSuppFile/v012i02/Simreg.zip
    Download Restriction: no

    File URL: https://libkey.io/http://hdl.handle.net/10.18637/jss.v012.i02?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Liu W. & Jamshidian M. & Zhang Y., 2004. "Multiple Comparison of Several Linear Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 395-403, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frank Schaarschmidt, 2017. "Multiple treatment comparisons in analysis of covariance with interaction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 609-628, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang-Yu Liu & Xin Liu & Rong-Xian Yue, 2024. "Locally optimal designs for comparing curves in generalized linear models," Statistical Papers, Springer, vol. 65(5), pages 3181-3201, July.
    2. Su, Haiyan & Liang, Hua, 2010. "An empirical likelihood-based method for comparison of treatment effects--Test of equality of coefficients in linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1079-1088, April.
    3. Sanyu Zhou, 2017. "One-sided hyperbolic simultaneous confidence bands for multiple and polynomial regression models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(2), pages 187-200, February.
    4. Lu, Xiaolei & Kuriki, Satoshi, 2017. "Simultaneous confidence bands for contrasts between several nonlinear regression curves," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 83-104.
    5. Jamshidian, Mortaza & Jennrich, Robert I. & Liu, Wei, 2007. "A study of partial F tests for multiple linear regression models," Computational Statistics & Data Analysis, Elsevier, vol. 51(12), pages 6269-6284, August.
    6. Sanyu Zhou, 2018. "An exact method for the multiple comparison of several polynomial regression models with applications in dose-response study," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(3), pages 413-429, July.
    7. Frank Schaarschmidt, 2017. "Multiple treatment comparisons in analysis of covariance with interaction," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(4), pages 609-628, November.
    8. Sanyu Zhou & Defa Wang & Jingjing Zhu, 2020. "Construction of simultaneous confidence bands for a percentile hyper-plane with predictor variables constrained in an ellipsoidal region," Statistical Papers, Springer, vol. 61(3), pages 1335-1346, June.
    9. Christopher Withers & Saralees Nadarajah, 2012. "Maximum modulus confidence bands," Statistical Papers, Springer, vol. 53(4), pages 811-819, November.
    10. Sophia Rosen & Ori Davidov, 2017. "Ordered Regressions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(4), pages 817-842, December.
    11. Liu, W. & Hayter, A.J. & Piegorsch, W.W. & Ah-Kine, P., 2009. "Comparison of hyperbolic and constant width simultaneous confidence bands in multiple linear regression under MVCS criterion," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1432-1439, August.
    12. W. Liu & F. Bretz & A. J. Hayter & H. P. Wynn, 2009. "Assessing Nonsuperiority, Noninferiority, or Equivalence When Comparing Two Regression Models Over a Restricted Covariate Region," Biometrics, The International Biometric Society, vol. 65(4), pages 1279-1287, December.
    13. Jamshidian, Mortaza & Liu, Wei & Bretz, Frank, 2010. "Simultaneous confidence bands for all contrasts of three or more simple linear regression models over an interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1475-1483, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jss:jstsof:v:012:i02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: http://www.jstatsoft.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.