IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v60y2019i1d10.1007_s00362-016-0831-2.html
   My bibliography  Save this article

Objective Bayesian testing for the linear combinations of normal means

Author

Listed:
  • Woo Dong Lee

    (Daegu Haany University)

  • Sang Gil Kang

    (Sangji University)

  • Yongku Kim

    (Kyungpook National University)

Abstract

This study considers objective Bayesian testing for the linear combinations of the means of several normal populations. We propose solutions based on a Bayesian model selection procedure to this problem in which no subjective input is considered. We first construct suitable priors to test the linear combinations of means based on measuring the divergence between competing models (so-called divergence-based priors). Next, we derive the intrinsic priors for which the Bayes factors and model selection probabilities are well defined. Finally, the behavior of the Bayes factors based on the DB priors, intrinsic priors, and classical test are compared in a simulation study and an example.

Suggested Citation

  • Woo Dong Lee & Sang Gil Kang & Yongku Kim, 2019. "Objective Bayesian testing for the linear combinations of normal means," Statistical Papers, Springer, vol. 60(1), pages 147-172, February.
  • Handle: RePEc:spr:stpapr:v:60:y:2019:i:1:d:10.1007_s00362-016-0831-2
    DOI: 10.1007/s00362-016-0831-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-016-0831-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-016-0831-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. M. J. Bayarri & G. García‐Donato, 2008. "Generalization of Jeffreys divergence‐based priors for Bayesian hypothesis testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 981-1003, November.
    2. Dal Kim & Sang Kang & Woo Lee, 2006. "Noninformative priors for linear combinations of the normal means," Statistical Papers, Springer, vol. 47(2), pages 249-262, March.
    3. José M. Bernardo & Raúl Rueda, 2002. "Bayesian Hypothesis Testing: a Reference Approach," International Statistical Review, International Statistical Institute, vol. 70(3), pages 351-372, December.
    4. Fulvio De Santis & Fulvio Spezzaferri, 1999. "Methods for Default and Robust Bayesian Model Comparison: the Fractional Bayes Factor Approach," International Statistical Review, International Statistical Institute, vol. 67(3), pages 267-286, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dal Ho Kim & Woo Dong Lee & Sang Gil Kang & Yongku Kim, 2019. "Objective Bayesian tests for Fieller–Creasy problem," Computational Statistics, Springer, vol. 34(3), pages 1159-1182, September.
    2. D. Fouskakis, 2019. "Priors via imaginary training samples of sufficient statistics for objective Bayesian hypothesis testing," METRON, Springer;Sapienza Università di Roma, vol. 77(3), pages 179-199, December.
    3. M. J. Bayarri & G. García‐Donato, 2008. "Generalization of Jeffreys divergence‐based priors for Bayesian hypothesis testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 981-1003, November.
    4. Sang Gil Kang & Woo Dong Lee & Yongku Kim, 2017. "Objective Bayesian testing on the common mean of several normal distributions under divergence-based priors," Computational Statistics, Springer, vol. 32(1), pages 71-91, March.
    5. Vidal, Ignacio & Iglesias, Pilar, 2008. "Comparison between a measurement error model and a linear model without measurement error," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 92-102, September.
    6. Dan J. Spitzner, 2023. "Calibrated Bayes factors under flexible priors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 733-767, September.
    7. Zhang, Duo & Wang, Min, 2018. "Objective Bayesian inference for the intraclass correlation coefficient in linear models," Statistics & Probability Letters, Elsevier, vol. 137(C), pages 292-296.
    8. Li, Yong & Zeng, Tao & Yu, Jun, 2014. "A new approach to Bayesian hypothesis testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 602-612.
    9. Guido Consonni & Eduardo Gutiérrez-Peña & Piero Veronese, 2008. "Compatible priors for Bayesian model comparison with an application to the Hardy–Weinberg equilibrium model," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 585-605, November.
    10. Cerqueti, Roy & Falbo, Paolo & Pelizzari, Cristian, 2017. "Relevant states and memory in Markov chain bootstrapping and simulation," European Journal of Operational Research, Elsevier, vol. 256(1), pages 163-177.
    11. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
    12. Nott, David J. & Leng, Chenlei, 2010. "Bayesian projection approaches to variable selection in generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3227-3241, December.
    13. Minerva Mukhopadhyay & Tapas Samanta, 2017. "A mixture of g-priors for variable selection when the number of regressors grows with the sample size," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 377-404, June.
    14. José M. Bernardo, 2003. "Discussion," International Statistical Review, International Statistical Institute, vol. 71(2), pages 307-314, August.
    15. James Berger & M. J. Bayarri & L. R. Pericchi, 2014. "The Effective Sample Size," Econometric Reviews, Taylor & Francis Journals, vol. 33(1-4), pages 197-217, June.
    16. Ram C. Kafle & Netra Khanal & Chris P. Tsokos, 2014. "Bayesian age-stratified joinpoint regression model: an application to lung and brain cancer mortality," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2727-2742, December.
    17. Toyoto Tanaka & Yoshihiro Hirose & Fumiyasu Komaki, 2020. "Second-order matching prior family parametrized by sample size and matching probability," Statistical Papers, Springer, vol. 61(4), pages 1701-1717, August.
    18. Sang Gil Kang & Woo Dong Lee & Yongku Kim, 2021. "Bayesian Multiple Change-Points Detection in a Normal Model with Heterogeneous Variances," Computational Statistics, Springer, vol. 36(2), pages 1365-1390, June.
    19. Li, Yong & Yu, Jun, 2012. "Bayesian hypothesis testing in latent variable models," Journal of Econometrics, Elsevier, vol. 166(2), pages 237-246.
    20. Yong Li & Xiaobin Liu & Jun Yu & Tao Zeng, 2018. "A New Wald Test for Hypothesis Testing Based on MCMC outputs," Papers 1801.00973, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:60:y:2019:i:1:d:10.1007_s00362-016-0831-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.