IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v32y2023i3d10.1007_s10260-023-00683-4.html
   My bibliography  Save this article

Calibrated Bayes factors under flexible priors

Author

Listed:
  • Dan J. Spitzner

    (University of Virginia)

Abstract

This article develops and explores a robust Bayes factor derived from a calibration technique that makes it particularly compatible with elicited prior knowledge. Building on previous explorations, the particular robust Bayes factor, dubbed a neutral-data comparison, is adapted for broad comparisons with existing robust Bayes factors, such as the fractional and intrinsic Bayes factors, in configurations defined by informative priors. The calibration technique is furthermore developed for use with flexible parametric priors—that is, mixture prior distributions with components that may be symmetric or skewed—, and demonstrated in an example context from forensic science. Throughout the exploration, the neutral-data comparison is shown to exhibit desirable sensitivity properties, and to show promise for adaptation to elaborate data-analysis scenarios.

Suggested Citation

  • Dan J. Spitzner, 2023. "Calibrated Bayes factors under flexible priors," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 733-767, September.
  • Handle: RePEc:spr:stmapp:v:32:y:2023:i:3:d:10.1007_s10260-023-00683-4
    DOI: 10.1007/s10260-023-00683-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-023-00683-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-023-00683-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. James Berger & Elías Moreno & Luis Pericchi & M. Bayarri & José Bernardo & Juan Cano & Julián Horra & Jacinto Martín & David Ríos-Insúa & Bruno Betrò & A. Dasgupta & Paul Gustafson & Larry Wasserman &, 1994. "An overview of robust Bayesian analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 3(1), pages 5-124, June.
    2. C. G. G. Aitken & D. Lucy, 2004. "Evaluation of trace evidence in the form of multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(1), pages 109-122, January.
    3. C. M. Carvalho & J. G. Scott, 2009. "Objective Bayesian model selection in Gaussian graphical models," Biometrika, Biometrika Trust, vol. 96(3), pages 497-512.
    4. Fulvio De Santis & Fulvio Spezzaferri, 1999. "Methods for Default and Robust Bayesian Model Comparison: the Fractional Bayes Factor Approach," International Statistical Review, International Statistical Institute, vol. 67(3), pages 267-286, December.
    5. C. G. G. Aitken & D. Lucy, 2004. "Corrigendum: Evaluation of trace evidence in the form of multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 53(4), pages 665-666, November.
    6. Heinz Schmidli & Sandro Gsteiger & Satrajit Roychoudhury & Anthony O'Hagan & David Spiegelhalter & Beat Neuenschwander, 2014. "Robust meta-analytic-predictive priors in clinical trials with historical control information," Biometrics, The International Biometric Society, vol. 70(4), pages 1023-1032, December.
    7. Guido Consonni & Luca La Rocca & Stefano Peluso, 2017. "Objective Bayes Covariate-Adjusted Sparse Graphical Model Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(3), pages 741-764, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nagler, Thomas & Czado, Claudia, 2016. "Evading the curse of dimensionality in nonparametric density estimation with simplified vine copulas," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 69-89.
    2. Laurenţiu Cătălin Hinoveanu & Fabrizio Leisen & Cristiano Villa, 2020. "A loss‐based prior for Gaussian graphical models," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 62(4), pages 444-466, December.
    3. Aitken, C.G.G. & Lucy, D. & Zadora, G. & Curran, J.M., 2006. "Evaluation of transfer evidence for three-level multivariate data with the use of graphical models," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2571-2588, June.
    4. Nikolaos Petrakis & Stefano Peluso & Dimitris Fouskakis & Guido Consonni, 2020. "Objective methods for graphical structural learning," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 74(3), pages 420-438, August.
    5. Hansen, Lars Peter, 2013. "Uncertainty Outside and Inside Economic Models," Nobel Prize in Economics documents 2013-7, Nobel Prize Committee.
    6. Paci, Lucia & Consonni, Guido, 2020. "Structural learning of contemporaneous dependencies in graphical VAR models," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    7. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    8. Chamberlain, Gary, 2000. "Econometrics and decision theory," Journal of Econometrics, Elsevier, vol. 95(2), pages 255-283, April.
    9. Wenlin Yuan & Ming-Hui Chen & John Zhong, 2022. "Flexible Conditional Borrowing Approaches for Leveraging Historical Data in the Bayesian Design of Superiority Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(2), pages 197-215, July.
    10. Wang, Hao, 2010. "Sparse seemingly unrelated regression modelling: Applications in finance and econometrics," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2866-2877, November.
    11. Egidi, Leonardo, 2022. "Effective sample size for a mixture prior," Statistics & Probability Letters, Elsevier, vol. 183(C).
    12. Zhichao Liu & Catherine Forbes & Heather Anderson, 2017. "Robust Bayesian exponentially tilted empirical likelihood method," Monash Econometrics and Business Statistics Working Papers 21/17, Monash University, Department of Econometrics and Business Statistics.
    13. Sinha, Pankaj & Jayaraman, Prabha, 2009. "Robustness of Bayesian results for Inverse Gaussian distribution under ML-II epsilon-contaminated and Edgeworth Series class of prior distributions," MPRA Paper 15396, University Library of Munich, Germany.
    14. Yu, Chi Wai & Clarke, Bertrand, 2010. "Asymptotics of Bayesian median loss estimation," Journal of Multivariate Analysis, Elsevier, vol. 101(9), pages 1950-1958, October.
    15. Xiaoquan Wen, 2014. "Bayesian model selection in complex linear systems, as illustrated in genetic association studies," Biometrics, The International Biometric Society, vol. 70(1), pages 73-83, March.
    16. Qingyang Liu & Junxian Geng & Frank Fleischer & Qiqi Deng, 2022. "Efficacy-Driven Dose Finding with Toxicity Control in Phase I Oncology Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 14(3), pages 413-431, December.
    17. Arielle Anderer & Hamsa Bastani & John Silberholz, 2022. "Adaptive Clinical Trial Designs with Surrogates: When Should We Bother?," Management Science, INFORMS, vol. 68(3), pages 1982-2002, March.
    18. Gómez Déniz, E. & Pérez Sánchez, J. M., 2001. "Fijación de primas de seguros bajo técnicas de robustez bayesiana," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 19, pages 5-20, Diciembre.
    19. Dragon Yongjun Tang, 2014. "Potential losses from incorporating return predictability into portfolio allocation," Australian Journal of Management, Australian School of Business, vol. 39(1), pages 35-45, February.
    20. Raffaella Giacomini & Toru Kitagawa & Matthew Read, 2021. "Robust Bayesian Analysis for Econometrics," Working Paper Series WP-2021-11, Federal Reserve Bank of Chicago.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:32:y:2023:i:3:d:10.1007_s10260-023-00683-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.