Author
Listed:
- Fulvio De Santis
- Fulvio Spezzaferri
Abstract
In the Bayesian approach to model selection and hypothesis testing, the Bayes factor plays a central role. However, the Bayes factor is very sensitive to prior distributions of parameters. This is a problem especially in the presence of weak prior information on the parameters of the models. The most radical consequence of this fact is that the Bayes factor is undetermined when improper priors are used. Nonetheless, extending the non‐informative approach of Bayesian analysis to model selection/testing procedures is important both from a theoretical and an applied viewpoint. The need to develop automatic and robust methods for model comparison has led to the introduction of several alternative Bayes factors. In this paper we review one of these methods: the fractional Bayes factor (O'Hagan, 1995). We discuss general properties of the method, such as consistency and coherence. Furthermore, in addition to the original, essentially asymptotic justifications of the fractional Bayes factor, we provide further finite‐sample motivations for its use. Connections and comparisons to other automatic methods are discussed and several issues of robustness with respect to priors and data are considered. Finally, we focus on some open problems in the fractional Bayes factor approach, and outline some possible answers and directions for future research. Dans I'approche Bayesienne relative à la sélection d'un model et à la vérification d'une hypothèse, le facteur de Bayes joue une rôle fondamental. Toutefois le facteur de Bayes est très sensible aux distributions à priori des parametres. Ceci constitue un problème surtout en presence d'une faible information à priori en ce qui concerne les paramètres des models. La conséquence la plus radical de ce fait est que le facteur de Bayes est undeterminé quand les distributions à priori non informatives sont utilisees. Cepandant, il est important d'élargir l'approche non informative de l'analyse Bayesienne à l'effet soit de déterminer la selection d'un model que de vérifier une hypothèse. La necessité de développer des méthodes automatiques et robustes pour la comparaison des models, a amenéà l'introduction des plusieurs facteurs de Bayes alternatifs.Cette étude prend en consideration les resultats principaux relatifs à une de ces methodes, à savvoir le facteur de Bayes fractionnaire. Nous amalysons les caracteristique générales de cettemethode telles que sa consistance et sa coherence. De plus en sus des justifications asyntotiques données à l'origine au facteur fractionnaire de Bayes nous apportons d'autres raisons qui demontrent le bien fondé de4 son utilisation dans le domaine d'un échantillonage fini. Nous prenons aussien consideration par comparaison d'autres methodes automatiqueset nous examinations d'autres caracteristiques telles que la robustesse par rapport aux les distributions à priori et aux données. En conclusion, nous attirons l'attention sur certains problèmes non encore resolus et proposons des solutions qui peuvent etre explorées d'avantage.
Suggested Citation
Fulvio De Santis & Fulvio Spezzaferri, 1999.
"Methods for Default and Robust Bayesian Model Comparison: the Fractional Bayes Factor Approach,"
International Statistical Review, International Statistical Institute, vol. 67(3), pages 267-286, December.
Handle:
RePEc:bla:istatr:v:67:y:1999:i:3:p:267-286
DOI: 10.1111/j.1751-5823.1999.tb00449.x
Download full text from publisher
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Woo Dong Lee & Sang Gil Kang & Yongku Kim, 2019.
"Objective Bayesian testing for the linear combinations of normal means,"
Statistical Papers, Springer, vol. 60(1), pages 147-172, February.
- M. J. Bayarri & G. García‐Donato, 2008.
"Generalization of Jeffreys divergence‐based priors for Bayesian hypothesis testing,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 981-1003, November.
- Sang Gil Kang & Woo Dong Lee & Yongku Kim, 2021.
"Bayesian Multiple Change-Points Detection in a Normal Model with Heterogeneous Variances,"
Computational Statistics, Springer, vol. 36(2), pages 1365-1390, June.
- Dal Ho Kim & Woo Dong Lee & Sang Gil Kang & Yongku Kim, 2019.
"Objective Bayesian tests for Fieller–Creasy problem,"
Computational Statistics, Springer, vol. 34(3), pages 1159-1182, September.
- Dan J. Spitzner, 2023.
"Calibrated Bayes factors under flexible priors,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 32(3), pages 733-767, September.
- Sang Gil Kang & Woo Dong Lee & Yongku Kim, 2017.
"Objective Bayesian testing on the common mean of several normal distributions under divergence-based priors,"
Computational Statistics, Springer, vol. 32(1), pages 71-91, March.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:istatr:v:67:y:1999:i:3:p:267-286. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/isiiinl.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.