IDEAS home Printed from https://ideas.repec.org/a/spr/aistmt/v65y2013i5p833-858.html
   My bibliography  Save this article

Extending circular distributions through transformation of argument

Author

Listed:
  • Toshihiro Abe
  • Arthur Pewsey
  • Kunio Shimizu

Abstract

This paper considers the general application to symmetric circular densities of two forms of change of argument: one produces extended families of distributions which contain symmetric densities which are more flat-topped, as well as others which are more sharply peaked, than the originals, and the second produces families which are skew. General results for the modality and shape characteristics of the densities which ensue are presented, and maximum likelihood estimation of the parameters of two extensions of the Jones–Pewsey family is discussed. The application of these two particular extended families is illustrated within analyses of data on monthly cases of sudden infant death syndrome in the UK. Copyright The Institute of Statistical Mathematics, Tokyo 2013

Suggested Citation

  • Toshihiro Abe & Arthur Pewsey & Kunio Shimizu, 2013. "Extending circular distributions through transformation of argument," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 833-858, October.
  • Handle: RePEc:spr:aistmt:v:65:y:2013:i:5:p:833-858
    DOI: 10.1007/s10463-012-0394-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10463-012-0394-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10463-012-0394-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jennifer Mooney & Ian Jolliffe & Peter Helms, 2006. "Modelling seasonally varying data: A case study for Sudden Infant Death Syndrome (SIDS)," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(5), pages 535-547.
    2. Umbach, Dale & Jammalamadaka, S. Rao, 2009. "Building asymmetry into circular distributions," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 659-663, March.
    3. Arthur Pewsey & Kunio Shimizu & Rolando de la Cruz, 2011. "On an extension of the von Mises distribution due to Batschelet," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(5), pages 1073-1085, February.
    4. Toshihiro Abe & Arthur Pewsey, 2011. "Sine-skewed circular distributions," Statistical Papers, Springer, vol. 52(3), pages 683-707, August.
    5. Abe, Toshihiro & Pewsey, Arthur & Shimizu, Kunio, 2009. "On Papakonstantinou's extension of the cardioid distribution," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2138-2147, October.
    6. M. C. Jones & Arthur Pewsey, 2012. "Inverse Batschelet Distributions for Circular Data," Biometrics, The International Biometric Society, vol. 68(1), pages 183-193, March.
    7. Kato, Shogo & Jones, M. C., 2010. "A Family of Distributions on the Circle With Links to, and Applications Arising From, Möbius Transformation," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 249-262.
    8. Jones, M.C. & Pewsey, Arthur, 2005. "A Family of Symmetric Distributions on the Circle," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1422-1428, December.
    9. A. Mooney, Jennifer & Helms, Peter J. & Jolliffe, Ian T., 2003. "Fitting mixtures of von Mises distributions: a case study involving sudden infant death syndrome," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 505-513, January.
    10. K. V. Mardia, 1999. "Directional statistics and shape analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 949-957.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    2. Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
    3. Sara Salvador & Riccardo Gatto, 2022. "Bayesian tests of symmetry for the generalized Von Mises distribution," Computational Statistics, Springer, vol. 37(2), pages 947-974, April.
    4. Ameijeiras-Alonso, Jose & Gijbels, Irène & Verhasselt, Anneleen, 2022. "On a family of two–piece circular distributions," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    5. Yogendra P. Chaubey & Shamal C. Karmaker, 2021. "On Some Circular Distributions Induced by Inverse Stereographic Projection," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 319-341, November.
    6. Masanobu Taniguchi & Shogo Kato & Hiroaki Ogata & Arthur Pewsey, 2020. "Models for circular data from time series spectra," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 808-829, November.
    7. Mojtaba Hatami & Mohammad Hossein Alamatsaz, 2019. "Skew-symmetric circular distributions and their structural properties," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 953-969, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. C. Jones & Arthur Pewsey, 2012. "Inverse Batschelet Distributions for Circular Data," Biometrics, The International Biometric Society, vol. 68(1), pages 183-193, March.
    2. Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
    3. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    4. Mojtaba Hatami & Mohammad Hossein Alamatsaz, 2019. "Skew-symmetric circular distributions and their structural properties," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 953-969, December.
    5. Masanobu Taniguchi & Shogo Kato & Hiroaki Ogata & Arthur Pewsey, 2020. "Models for circular data from time series spectra," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 808-829, November.
    6. Christophe Ley & Thomas Verdebout, 2014. "Skew-rotsymmetric Distributions on Unit Spheres and Related Efficient Inferential Proceedures," Working Papers ECARES ECARES 2014-46, ULB -- Universite Libre de Bruxelles.
    7. Yoichi Miyata & Takayuki Shiohama & Toshihiro Abe, 2023. "Identifiability of Asymmetric Circular and Cylindrical Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1431-1451, August.
    8. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    9. Ameijeiras-Alonso, Jose & Gijbels, Irène & Verhasselt, Anneleen, 2022. "On a family of two–piece circular distributions," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    10. Jose Ameijeiras-Alonso & Christophe Ley & Arthur Pewsey & Thomas Verdebout, 2021. "On optimal tests for circular reflective symmetry about an unknown central direction," Statistical Papers, Springer, vol. 62(4), pages 1651-1674, August.
    11. Toshihiro Abe & Arthur Pewsey, 2011. "Sine-skewed circular distributions," Statistical Papers, Springer, vol. 52(3), pages 683-707, August.
    12. M. Jones & Arthur Pewsey & Shogo Kato, 2015. "On a class of circulas: copulas for circular distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 843-862, October.
    13. Toshihiro Abe & Hiroaki Ogata & Takayuki Shiohama & Hiroyuki Taniai, 2017. "Circular autocorrelation of stationary circular Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 275-290, October.
    14. Arnab Kumar Laha & A. C. Pravida Raja & K. C. Mahesh, 2019. "SB-robust estimation of mean direction for some new circular distributions," Statistical Papers, Springer, vol. 60(3), pages 877-902, June.
    15. Shogo Kato & Arthur Pewsey & M. C. Jones, 2022. "Tractable circula densities from Fourier series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 595-618, September.
    16. Abe, Toshihiro & Pewsey, Arthur, 2011. "Symmetric circular models through duplication and cosine perturbation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3271-3282, December.
    17. Yogendra P. Chaubey & Shamal C. Karmaker, 2021. "On Some Circular Distributions Induced by Inverse Stereographic Projection," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 319-341, November.
    18. Shogo Kato & Shinto Eguchi, 2016. "Robust estimation of location and concentration parameters for the von Mises–Fisher distribution," Statistical Papers, Springer, vol. 57(1), pages 205-234, March.
    19. Sungsu Kim & Ashis SenGupta, 2013. "A three-parameter generalized von Mises distribution," Statistical Papers, Springer, vol. 54(3), pages 685-693, August.
    20. Toshihiro Abe & Christophe Ley, 2015. "A Tractable, Parsimonious and Highly Flexible Model for Cylindrical Data, with Applications," Working Papers ECARES ECARES 2015-20, ULB -- Universite Libre de Bruxelles.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:aistmt:v:65:y:2013:i:5:p:833-858. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.