IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v62y2021i4d10.1007_s00362-019-01150-7.html
   My bibliography  Save this article

On optimal tests for circular reflective symmetry about an unknown central direction

Author

Listed:
  • Jose Ameijeiras-Alonso

    (KU Leuven)

  • Christophe Ley

    (Ghent University)

  • Arthur Pewsey

    (University of Extremadura)

  • Thomas Verdebout

    (Université Libre de Bruxelles)

Abstract

Symmetry is one of the most fundamental of dividing hypotheses, its rejection, or not, heavily influencing subsequent modeling strategies. In this paper, the authors construct tests for circular reflective symmetry about an unknown central direction that are asymptotically valid within a semi-parametric class of distributions and maintain certain parametric local and asymptotic optimality properties. The asymptotic distributions of the test statistics under the null hypothesis and under local alternatives are established, and a pre-existing omnibus test is identified as a special case of the proposed construction. The finite-sample properties of the semi-parametric tests are compared with those of other testing approaches in a simulation experiment, and recommendations made regarding testing for reflective symmetry in practice. Analyses of data on the directions of cracks in hip replacements illustrate the proposed methodology.

Suggested Citation

  • Jose Ameijeiras-Alonso & Christophe Ley & Arthur Pewsey & Thomas Verdebout, 2021. "On optimal tests for circular reflective symmetry about an unknown central direction," Statistical Papers, Springer, vol. 62(4), pages 1651-1674, August.
  • Handle: RePEc:spr:stpapr:v:62:y:2021:i:4:d:10.1007_s00362-019-01150-7
    DOI: 10.1007/s00362-019-01150-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00362-019-01150-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00362-019-01150-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oliveira, M. & Crujeiras, R.M. & Rodríguez-Casal, A., 2012. "A plug-in rule for bandwidth selection in circular density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 3898-3908.
    2. Jupp, P.E. & Regoli, G. & Azzalini, A., 2016. "A general setting for symmetric distributions and their relationship to general distributions," Journal of Multivariate Analysis, Elsevier, vol. 148(C), pages 107-119.
    3. M. C. Jones & Arthur Pewsey, 2012. "Inverse Batschelet Distributions for Circular Data," Biometrics, The International Biometric Society, vol. 68(1), pages 183-193, March.
    4. M. Bogdan & K. Bogdan & A. Futschik, 2002. "A Data Driven Smooth Test for Circular Uniformity," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 29-44, March.
    5. Adelchi Azzalini & Antonella Capitanio, 2003. "Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(2), pages 367-389, May.
    6. Umbach, Dale & Jammalamadaka, S. Rao, 2009. "Building asymmetry into circular distributions," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 659-663, March.
    7. Toshihiro Abe & Arthur Pewsey, 2011. "Sine-skewed circular distributions," Statistical Papers, Springer, vol. 52(3), pages 683-707, August.
    8. Arthur Pewsey, 2004. "Testing for Circular Reflective Symmetry about a Known Median Axis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 31(5), pages 575-585.
    9. Shogo Kato & M. C. Jones, 2015. "A tractable and interpretable four-parameter family of unimodal distributions on the circle," Biometrika, Biometrika Trust, vol. 102(1), pages 181-190.
    10. Jones, M.C. & Pewsey, Arthur, 2005. "A Family of Symmetric Distributions on the Circle," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1422-1428, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ameijeiras-Alonso, Jose & Gijbels, Irène & Verhasselt, Anneleen, 2022. "On a family of two–piece circular distributions," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
    3. Christophe Ley & Thomas Verdebout, 2014. "Skew-rotsymmetric Distributions on Unit Spheres and Related Efficient Inferential Proceedures," Working Papers ECARES ECARES 2014-46, ULB -- Universite Libre de Bruxelles.
    4. Ley, Christophe & Verdebout, Thomas, 2017. "Skew-rotationally-symmetric distributions and related efficient inferential procedures," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 67-81.
    5. M. C. Jones, 2015. "On Families of Distributions with Shape Parameters," International Statistical Review, International Statistical Institute, vol. 83(2), pages 175-192, August.
    6. Abe, Toshihiro & Pewsey, Arthur, 2011. "Symmetric circular models through duplication and cosine perturbation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3271-3282, December.
    7. Yogendra P. Chaubey & Shamal C. Karmaker, 2021. "On Some Circular Distributions Induced by Inverse Stereographic Projection," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 319-341, November.
    8. Azzalini, Adelchi, 2022. "An overview on the progeny of the skew-normal family— A personal perspective," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Toshihiro Abe & Arthur Pewsey & Kunio Shimizu, 2013. "Extending circular distributions through transformation of argument," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 833-858, October.
    10. Masanobu Taniguchi & Shogo Kato & Hiroaki Ogata & Arthur Pewsey, 2020. "Models for circular data from time series spectra," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 808-829, November.
    11. Toshihiro Abe & Arthur Pewsey, 2011. "Sine-skewed circular distributions," Statistical Papers, Springer, vol. 52(3), pages 683-707, August.
    12. Sara Salvador & Riccardo Gatto, 2022. "Bayesian tests of symmetry for the generalized Von Mises distribution," Computational Statistics, Springer, vol. 37(2), pages 947-974, April.
    13. Yoichi Miyata & Takayuki Shiohama & Toshihiro Abe, 2023. "Identifiability of Asymmetric Circular and Cylindrical Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1431-1451, August.
    14. Shogo Kato & Arthur Pewsey & M. C. Jones, 2022. "Tractable circula densities from Fourier series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 595-618, September.
    15. Andrade, Ana C.C. & Pereira, Gustavo H.A. & Artes, Rinaldo, 2023. "The circular quantile residual," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    16. Ameijeiras-Alonso, Jose & Gijbels, Irène & Verhasselt, Anneleen, 2022. "On a family of two–piece circular distributions," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    17. M. C. Jones & Arthur Pewsey, 2012. "Inverse Batschelet Distributions for Circular Data," Biometrics, The International Biometric Society, vol. 68(1), pages 183-193, March.
    18. Sungsu Kim & Ashis SenGupta, 2013. "A three-parameter generalized von Mises distribution," Statistical Papers, Springer, vol. 54(3), pages 685-693, August.
    19. M. Jones & Arthur Pewsey & Shogo Kato, 2015. "On a class of circulas: copulas for circular distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 843-862, October.
    20. Toshihiro Abe & Hiroaki Ogata & Takayuki Shiohama & Hiroyuki Taniai, 2017. "Circular autocorrelation of stationary circular Markov processes," Statistical Inference for Stochastic Processes, Springer, vol. 20(3), pages 275-290, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:62:y:2021:i:4:d:10.1007_s00362-019-01150-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.