IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v31y2022i3d10.1007_s11749-021-00790-y.html
   My bibliography  Save this article

Tractable circula densities from Fourier series

Author

Listed:
  • Shogo Kato

    (Institute of Statistical Mathematics)

  • Arthur Pewsey

    (University of Extremadura)

  • M. C. Jones

    (The Open University)

Abstract

This article proposes an approach, based on infinite Fourier series, to constructing tractable densities for the bivariate circular analogues of copulas recently coined ‘circulas’. As examples of the general approach, we consider circula densities generated by various patterns of nonzero Fourier coefficients. The shape and sparsity of such arrangements are found to play a key role in determining the properties of the resultant models. The special cases of the circula densities we consider all have simple closed-form expressions involving no computationally demanding normalizing constants and display wide-ranging distributional shapes. A highly successful model identification tool and methods for parameter estimation and goodness-of-fit testing are provided for the circula densities themselves and the bivariate circular densities obtained from them using a marginal specification construction. The modelling capabilities of such bivariate circular densities are compared with those of five existing models in a numerical experiment, and their application illustrated in an analysis of wind directions.

Suggested Citation

  • Shogo Kato & Arthur Pewsey & M. C. Jones, 2022. "Tractable circula densities from Fourier series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 595-618, September.
  • Handle: RePEc:spr:testjl:v:31:y:2022:i:3:d:10.1007_s11749-021-00790-y
    DOI: 10.1007/s11749-021-00790-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-021-00790-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-021-00790-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Masanobu Taniguchi & Shogo Kato & Hiroaki Ogata & Arthur Pewsey, 2020. "Models for circular data from time series spectra," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 808-829, November.
    2. Umbach, Dale & Jammalamadaka, S. Rao, 2009. "Building asymmetry into circular distributions," Statistics & Probability Letters, Elsevier, vol. 79(5), pages 659-663, March.
    3. Pertsemlidis Alexander & Zelinka Jan & Fondon John W. & Henderson R. Keith & Otwinowski Zbyszek, 2005. "Bayesian Statistical Studies of the Ramachandran Distribution," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 4(1), pages 1-18, November.
    4. Toshihiro Abe & Arthur Pewsey, 2011. "Sine-skewed circular distributions," Statistical Papers, Springer, vol. 52(3), pages 683-707, August.
    5. Shogo Kato & M. C. Jones, 2015. "A tractable and interpretable four-parameter family of unimodal distributions on the circle," Biometrika, Biometrika Trust, vol. 102(1), pages 181-190.
    6. Jupp, P.E., 2015. "Copulae on products of compact Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 92-98.
    7. Jupp, P.E. & Kume, A., 2020. "Measures of goodness of fit obtained by almost-canonical transformations on Riemannian manifolds," Journal of Multivariate Analysis, Elsevier, vol. 176(C).
    8. Kanti V. Mardia & Charles C. Taylor & Ganesh K. Subramaniam, 2007. "Protein Bioinformatics and Mixtures of Bivariate von Mises Distributions for Angular Data," Biometrics, The International Biometric Society, vol. 63(2), pages 505-512, June.
    9. K. V. Mardia, 1999. "Directional statistics and shape analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 26(8), pages 949-957.
    10. Grace Shieh & Richard Johnson, 2005. "Inferences based on a bivariate distribution with von Mises marginals," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(4), pages 789-802, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    2. Abe, Toshihiro & Miyata, Yoichi & Shiohama, Takayuki, 2023. "Bayesian estimation for mode and anti-mode preserving circular distributions," Econometrics and Statistics, Elsevier, vol. 27(C), pages 136-160.
    3. M. Jones & Arthur Pewsey & Shogo Kato, 2015. "On a class of circulas: copulas for circular distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 843-862, October.
    4. Mohammad Arashi & Najmeh Nakhaei Rad & Andriette Bekker & Wolf-Dieter Schubert, 2021. "Möbius Transformation-Induced Distributions Provide Better Modelling for Protein Architecture," Mathematics, MDPI, vol. 9(21), pages 1-24, October.
    5. Mojtaba Hatami & Mohammad Hossein Alamatsaz, 2019. "Skew-symmetric circular distributions and their structural properties," Indian Journal of Pure and Applied Mathematics, Springer, vol. 50(4), pages 953-969, December.
    6. Andrade, Ana C.C. & Pereira, Gustavo H.A. & Artes, Rinaldo, 2023. "The circular quantile residual," Computational Statistics & Data Analysis, Elsevier, vol. 178(C).
    7. Toshihiro Abe & Arthur Pewsey & Kunio Shimizu, 2013. "Extending circular distributions through transformation of argument," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(5), pages 833-858, October.
    8. Imoto, Tomoaki & Abe, Toshihiro, 2021. "Simple construction of a toroidal distribution from independent circular distributions," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    9. Masanobu Taniguchi & Shogo Kato & Hiroaki Ogata & Arthur Pewsey, 2020. "Models for circular data from time series spectra," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 808-829, November.
    10. Jose Ameijeiras-Alonso & Christophe Ley & Arthur Pewsey & Thomas Verdebout, 2021. "On optimal tests for circular reflective symmetry about an unknown central direction," Statistical Papers, Springer, vol. 62(4), pages 1651-1674, August.
    11. Toshihiro Abe & Arthur Pewsey, 2011. "Sine-skewed circular distributions," Statistical Papers, Springer, vol. 52(3), pages 683-707, August.
    12. Sara Salvador & Riccardo Gatto, 2022. "Bayesian tests of symmetry for the generalized Von Mises distribution," Computational Statistics, Springer, vol. 37(2), pages 947-974, April.
    13. Fernández de Marcos Giménez de los Galanes, Alberto, 2022. "Data-driven stabilizations of goodness-of-fit tests," DES - Working Papers. Statistics and Econometrics. WS 35324, Universidad Carlos III de Madrid. Departamento de Estadística.
    14. Sungsu Kim & Ashis SenGupta, 2013. "A three-parameter generalized von Mises distribution," Statistical Papers, Springer, vol. 54(3), pages 685-693, August.
    15. Fernández-Durán Juan José & Gregorio-Domínguez MarÍa Mercedes, 2014. "Modeling angles in proteins and circular genomes using multivariate angular distributions based on multiple nonnegative trigonometric sums," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(1), pages 1-18, February.
    16. Fernández-de-Marcos, Alberto & García-Portugués, Eduardo, 2023. "Data-driven stabilizations of goodness-of-fit tests," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    17. Saptarshi Chakraborty & Samuel W. K. Wong, 2023. "On the circular correlation coefficients for bivariate von Mises distributions on a torus," Statistical Papers, Springer, vol. 64(2), pages 643-675, April.
    18. Christophe Ley & Thomas Verdebout, 2014. "Skew-rotsymmetric Distributions on Unit Spheres and Related Efficient Inferential Proceedures," Working Papers ECARES ECARES 2014-46, ULB -- Universite Libre de Bruxelles.
    19. Yoichi Miyata & Takayuki Shiohama & Toshihiro Abe, 2023. "Identifiability of Asymmetric Circular and Cylindrical Distributions," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(2), pages 1431-1451, August.
    20. Yasuhito Tsuruta & Masahiko Sagae, 2020. "Theoretical properties of bandwidth selectors for kernel density estimation on the circle," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(2), pages 511-530, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:31:y:2022:i:3:d:10.1007_s11749-021-00790-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.