IDEAS home Printed from https://ideas.repec.org/a/spr/stpapr/v47y2006i2p279-298.html
   My bibliography  Save this article

Change-of-variance problem for linear processes with long memory

Author

Listed:
  • Lihong Wang
  • Jinde Wang

Abstract

No abstract is available for this item.

Suggested Citation

  • Lihong Wang & Jinde Wang, 2006. "Change-of-variance problem for linear processes with long memory," Statistical Papers, Springer, vol. 47(2), pages 279-298, March.
  • Handle: RePEc:spr:stpapr:v:47:y:2006:i:2:p:279-298
    DOI: 10.1007/s00362-005-0288-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00362-005-0288-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00362-005-0288-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    2. Gombay Edit & Horváth Lajos & Husková Marie, 1996. "Estimators And Tests For Change In Variances," Statistics & Risk Modeling, De Gruyter, vol. 14(2), pages 145-160, February.
    3. Wang Lihong, 2003. "Limit theorems in change-point problems with multivariate long-range dependent observations," Statistics & Risk Modeling, De Gruyter, vol. 21(3), pages 283-300, March.
    4. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fa-mei Zheng & Qing-pei Zang, 2015. "A general pattern of asymptotic behavior of the R/S statistics for linear processes," Statistical Papers, Springer, vol. 56(1), pages 191-204, February.
    2. Wenzhi Zhao & Zheng Tian & Zhiming Xia, 2010. "Ratio test for variance change point in linear process with long memory," Statistical Papers, Springer, vol. 51(2), pages 397-407, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erhard Reschenhofer & Manveer K. Mangat, 2021. "Fast computation and practical use of amplitudes at non-Fourier frequencies," Computational Statistics, Springer, vol. 36(3), pages 1755-1773, September.
    2. Barkoulas, John T. & Baum, Christopher F., 1996. "Long-term dependence in stock returns," Economics Letters, Elsevier, vol. 53(3), pages 253-259, December.
    3. Paramsothy Silvapulle, 2001. "A Score Test For Seasonal Fractional Integration And Cointegration," Econometric Reviews, Taylor & Francis Journals, vol. 20(1), pages 85-104.
    4. Bhandari, Avishek, 2020. "Long Memory and Correlation Structures of Select Stock Returns Using Novel Wavelet and Fractal Connectivity Networks," MPRA Paper 101946, University Library of Munich, Germany.
    5. Fernandez Viviana, 2011. "Alternative Estimators of Long-Range Dependence," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(2), pages 1-37, March.
    6. Elkin Castaño & Santiago Gallón & Karoll Gómez, 2010. "Estimation Biases, Size and Power of a Test on the Long Memory Parameter in ARFIMA Models," Lecturas de Economía, Universidad de Antioquia, Departamento de Economía, issue 73, pages 131-148.
    7. Bhandari, Avishek, 2020. "Long memory and fractality among global equity markets: A multivariate wavelet approach," MPRA Paper 99653, University Library of Munich, Germany.
    8. S. Lardic & V. Mignon, 2002. "Term premium and long-range dependence in volatility : A FIGARCH-M estimation on some Asian countries," THEMA Working Papers 2002-26, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    9. He, Shanshan & Wang, Yudong, 2017. "Revisiting the multifractality in stock returns and its modeling implications," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 11-20.
    10. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    11. Silverberg, Gerald & Verspagen, Bart, 1999. "Long Memory in Time Series of Economic Growth and Convergence," Research Memorandum 015, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).
    12. Lee, Dongin & Schmidt, Peter, 1996. "On the power of the KPSS test of stationarity against fractionally-integrated alternatives," Journal of Econometrics, Elsevier, vol. 73(1), pages 285-302, July.
    13. Vo, Long H. & Roberts, Leigh, 2014. "On long memory behaviour and predictability of financial markets," Working Paper Series 18828, Victoria University of Wellington, School of Economics and Finance.
    14. Quoreshi, Shahiduzzaman, 2006. "LongMemory, Count Data, Time Series Modelling for Financial Application," Umeå Economic Studies 673, Umeå University, Department of Economics.
    15. Golinski, Adam & Madeira, Joao & Rambaccussing, Dooruj, 2014. "Fractional Integration of the Price-Dividend Ratio in a Present-Value Model," MPRA Paper 58554, University Library of Munich, Germany.
    16. Christelle Lecourt, 2000. "Dépendance de court et de long terme des rendements de taux de change," Économie et Prévision, Programme National Persée, vol. 146(5), pages 127-137.
    17. Pan, Ming-Shiun & Liu, Y. Angela, 1999. "Fractional cointegration, long memory, and exchange rate dynamics," International Review of Economics & Finance, Elsevier, vol. 8(3), pages 305-316, September.
    18. Gonzalo, Jesus & Lee, Tae-Hwy, 1998. "Pitfalls in testing for long run relationships," Journal of Econometrics, Elsevier, vol. 86(1), pages 129-154, June.
    19. Goddard, John & Onali, Enrico, 2012. "Self-affinity in financial asset returns," International Review of Financial Analysis, Elsevier, vol. 24(C), pages 1-11.
    20. Baillie, Richard T. & Bollerslev, Tim & Mikkelsen, Hans Ole, 1996. "Fractionally integrated generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 74(1), pages 3-30, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stpapr:v:47:y:2006:i:2:p:279-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.