IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpem/9506005.html
   My bibliography  Save this paper

A Score Test for Seasonal Fractional Integration and Cointegration

Author

Listed:
  • Param Silvapulle

    (Visitor at The University of Iowa)

Abstract

This paper develops a time domain score statistic for testing fractional integration at zero and seasonal frequencies in quarterly time series models. Further, it introduces the notion of fractional cointegration at different frequencies between two seasonally integrated, I(1) series. In testing problem involving seasonal fractional cointegration, it is argued that the alternative hypothesis is one-sided for which the usual score test may not be appropriate. Therefore, based on the ideas in Silvapulle and Silvapulle (1995), a one-sided score statistics is constructed. A simulation study finds that the score statistic generally has desirable size and power properties in finite samples. The score statistics are applied to the quarterly Australian consumption function. The income and consumption series are found to be I(1) at zero and seasonal frequencies and these two series are not fractionally cointegrated at any frequency.

Suggested Citation

  • Param Silvapulle, 1995. "A Score Test for Seasonal Fractional Integration and Cointegration," Econometrics 9506005, University Library of Munich, Germany, revised 16 Jun 1995.
  • Handle: RePEc:wpa:wuwpem:9506005
    Note: Zipped using PKZIP v2.04, encoded using UUENCODE v5.15. Zipped file includes 1 file -- score (body in WP5.1 format 22 pgs.)
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/9506/9506005.ps.gz
    Download Restriction: no

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/em/papers/9506/9506005.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sowell, Fallaw, 1992. "Maximum likelihood estimation of stationary univariate fractionally integrated time series models," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 165-188.
    2. Hylleberg, S. & Engle, R. F. & Granger, C. W. J. & Yoo, B. S., 1990. "Seasonal integration and cointegration," Journal of Econometrics, Elsevier, vol. 44(1-2), pages 215-238.
    3. Lo, Andrew W, 1991. "Long-Term Memory in Stock Market Prices," Econometrica, Econometric Society, vol. 59(5), pages 1279-1313, September.
    4. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    5. Christos Agiakloglou & Paul Newbold & Mark Wohar, 1993. "Bias In An Estimator Of The Fractional Difference Parameter," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(3), pages 235-246, May.
    6. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    7. Henry L. Gray & Nien‐Fan Zhang & Wayne A. Woodward, 1989. "On Generalized Fractional Processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(3), pages 233-257, May.
    8. Uwe Hassler, 1993. "Regression Of Spectral Estimators With Fractionally Integrated Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(4), pages 369-380, July.
    9. Granger, Clive W J, 1986. "Developments in the Study of Cointegrated Economic Variables," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 48(3), pages 213-228, August.
    10. Osborn, Denise R., 1993. "Seasonal cointegration," Journal of Econometrics, Elsevier, vol. 55(1-2), pages 299-303.
    11. Cheung, Yin-Wong & Lai, Kon S, 1993. "A Fractional Cointegration Analysis of Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 103-112, January.
    12. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gil-Alaña, Luis A., 2000. "Deterministic seasonality versus seasonal fractional integration," SFB 373 Discussion Papers 2000,106, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    2. Luis A. Gil-Alana, 2003. "Long Memory In Financial Time Series Data With Non-Gaussian Disturbances," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(02), pages 119-134.
    3. Gil-Alana, L.A., 2008. "Testing of seasonal integration and cointegration with fractionally integrated techniques: An application to the Danish labour demand," Economic Modelling, Elsevier, vol. 25(2), pages 326-339, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Haulde & Morten Ørregaard Nielsen, 2022. "Fractional integration and cointegration," CREATES Research Papers 2022-02, Department of Economics and Business Economics, Aarhus University.
    2. Michael J. Dueker & Richard Startz, 1997. "Maximum-likelihood estimation of fractional cointegration with application to the short end of the yield curve," Working Papers 1994-027, Federal Reserve Bank of St. Louis.
    3. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    4. A. Mansur & M. Masih & Rumi Masih, 2004. "Fractional cointegration, low frequency dynamics and long-run purchasing power parity: an analysis of the Australian dollar over its recent float," Applied Economics, Taylor & Francis Journals, vol. 36(6), pages 593-605.
    5. Banerjee, Anindya & Urga, Giovanni, 2005. "Modelling structural breaks, long memory and stock market volatility: an overview," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 1-34.
    6. Hassler, U. & Marmol, F. & Velasco, C., 2006. "Residual log-periodogram inference for long-run relationships," Journal of Econometrics, Elsevier, vol. 130(1), pages 165-207, January.
    7. Sandrine Lardic & Valérie Mignon, 2004. "Fractional cointegration and the term structure," Empirical Economics, Springer, vol. 29(4), pages 723-736, December.
    8. Sandro Sapio, 2004. "Markets Design, Bidding Rules, and Long Memory in Electricity Prices," Revue d'Économie Industrielle, Programme National Persée, vol. 107(1), pages 151-170.
    9. Canarella, Giorgio & Miller, Stephen M., 2017. "Inflation targeting and inflation persistence: New evidence from fractional integration and cointegration," Journal of Economics and Business, Elsevier, vol. 92(C), pages 45-62.
    10. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    11. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    12. Henryk Gurgul & Tomasz Wójtowicz, 2006. "Long-run properties of trading volume and volatility of equities listed in DJIA index," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 16(3-4), pages 29-56.
    13. Pan, Ming-Shiun & Liu, Y. Angela, 1999. "Fractional cointegration, long memory, and exchange rate dynamics," International Review of Economics & Finance, Elsevier, vol. 8(3), pages 305-316, September.
    14. S. Lardic & V. Mignon, 2002. "Fractional cointegration and term structure of interest rates," THEMA Working Papers 2002-28, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    15. Guglielmo Maria Caporale & Luis Gil‐Alana, 2014. "Long‐Run and Cyclical Dynamics in the US Stock Market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(2), pages 147-161, March.
    16. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, January.
    17. Morten Ørregaard Nielsen & Per Houmann Frederiksen, 2005. "Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 405-443.
    18. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    19. Brunetti, Celso & Gilbert, Christopher L., 2000. "Bivariate FIGARCH and fractional cointegration," Journal of Empirical Finance, Elsevier, vol. 7(5), pages 509-530, December.
    20. Saadet Kirbas Kasman & Adnan Kasman & Evrim Turgutlu, 2005. "Fisher Hypothesis Revisited: A Fractional Cointegration Analysis," Discussion Paper Series 05/04, Dokuz Eylül University, Faculty of Business, Department of Economics, revised 23 Nov 2005.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:9506005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.