IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v33y2024i3d10.1007_s10260-024-00750-4.html
   My bibliography  Save this article

Endogeneity in stochastic frontier models with 'wrong' skewness: copula approach without external instruments

Author

Listed:
  • Rouven E. Haschka

    (Zeppelin University
    Corvinus University)

Abstract

Stochastic frontier models commonly assume positive skewness for the inefficiency term. However, when this assumption is violated, efficiency scores converge to unity. The potential endogeneity of model regressors introduces another empirical challenge, impeding the identification of causal relationships. This paper tackles these issues by employing an instrument-free estimation method that extends joint estimation through copulas to handle endogenous regressors and skewness issues. The method relies on the Gaussian copula function to capture dependence between endogenous regressors and composite errors with a simultaneous consideration of positively or negatively skewed inefficiency. Model parameters are estimated through maximum likelihood, and Monte Carlo simulations are employed to evaluate the performance of the proposed estimation procedures in finite samples. This research contributes to the stochastic frontier models and production economics literature by presenting a flexible and parsimonious method capable of addressing wrong skewness of inefficiency and endogenous regressors simultaneously. The applicability of the method is demonstrated through an empirical example.

Suggested Citation

  • Rouven E. Haschka, 2024. "Endogeneity in stochastic frontier models with 'wrong' skewness: copula approach without external instruments," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 807-826, July.
  • Handle: RePEc:spr:stmapp:v:33:y:2024:i:3:d:10.1007_s10260-024-00750-4
    DOI: 10.1007/s10260-024-00750-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-024-00750-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-024-00750-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Stochastic frontier analysis; Skewness; Endogenous regressors; Copula function; Maximum likelihood;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:3:d:10.1007_s10260-024-00750-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.