IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v33y2024i3d10.1007_s10260-024-00750-4.html
   My bibliography  Save this article

Endogeneity in stochastic frontier models with 'wrong' skewness: copula approach without external instruments

Author

Listed:
  • Rouven E. Haschka

    (Zeppelin University
    Corvinus University)

Abstract

Stochastic frontier models commonly assume positive skewness for the inefficiency term. However, when this assumption is violated, efficiency scores converge to unity. The potential endogeneity of model regressors introduces another empirical challenge, impeding the identification of causal relationships. This paper tackles these issues by employing an instrument-free estimation method that extends joint estimation through copulas to handle endogenous regressors and skewness issues. The method relies on the Gaussian copula function to capture dependence between endogenous regressors and composite errors with a simultaneous consideration of positively or negatively skewed inefficiency. Model parameters are estimated through maximum likelihood, and Monte Carlo simulations are employed to evaluate the performance of the proposed estimation procedures in finite samples. This research contributes to the stochastic frontier models and production economics literature by presenting a flexible and parsimonious method capable of addressing wrong skewness of inefficiency and endogenous regressors simultaneously. The applicability of the method is demonstrated through an empirical example.

Suggested Citation

  • Rouven E. Haschka, 2024. "Endogeneity in stochastic frontier models with 'wrong' skewness: copula approach without external instruments," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 33(3), pages 807-826, July.
  • Handle: RePEc:spr:stmapp:v:33:y:2024:i:3:d:10.1007_s10260-024-00750-4
    DOI: 10.1007/s10260-024-00750-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-024-00750-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-024-00750-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daniel, Betty C. & Hafner, Christian M. & Simar, Léopold & Manner, Hans, 2019. "Asymmetries In Business Cycles And The Role Of Oil Prices," Macroeconomic Dynamics, Cambridge University Press, vol. 23(4), pages 1622-1648, June.
    2. Jörg Breitung & Alexander Mayer & Dominik Wied, 2024. "Asymptotic properties of endogeneity corrections using nonlinear transformations," The Econometrics Journal, Royal Economic Society, vol. 27(3), pages 362-383.
    3. Rouven Edgar Haschka & Katharina Schley & Helmut Herwartz, 2020. "Provision of health care services and regional diversity in Germany: insights from a Bayesian health frontier analysis with spatial dependencies," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 21(1), pages 55-71, February.
    4. Christian M. Hafner & Hans Manner & Léopold Simar, 2018. "The “wrong skewness” problem in stochastic frontier models: A new approach," Econometric Reviews, Taylor & Francis Journals, vol. 37(4), pages 380-400, April.
    5. Hafner, Christian & Manner, Hans & Simar, Leopold, 2013. "The “wrong skewnessâ€Ω problem in stochastic frontier models: A new approach," LIDAM Discussion Papers ISBA 2013046, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Papadopoulos Alecos, 2022. "Accounting for Endogeneity in Regression Models Using Copulas: A Step-by-Step Guide for Empirical Studies," Journal of Econometric Methods, De Gruyter, vol. 11(1), pages 127-154, January.
    7. Vo Hung Son, Tran & Coelli, Tim & Fleming, Euan, 1993. "Analysis of the technical efficiency of state rubber farms in Vietnam," Agricultural Economics, Blackwell, vol. 9(3), pages 183-201, September.
    8. Murray D. Smith, 2008. "Stochastic frontier models with dependent error components," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 172-192, March.
    9. Waldman, Donald M., 1982. "A stationary point for the stochastic frontier likelihood," Journal of Econometrics, Elsevier, vol. 18(2), pages 275-279, February.
    10. Green, Alison & Mayes, David, 1991. "Technical Inefficiency in Manufacturing Industries," Economic Journal, Royal Economic Society, vol. 101(406), pages 523-538, May.
    11. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
    12. Flecher, C. & Naveau, P. & Allard, D., 2009. "Estimating the closed skew-normal distribution parameters using weighted moments," Statistics & Probability Letters, Elsevier, vol. 79(19), pages 1977-1984, October.
    13. Prokhorov, Artem & Schmidt, Peter, 2009. "Likelihood-based estimation in a panel setting: Robustness, redundancy and validity of copulas," Journal of Econometrics, Elsevier, vol. 153(1), pages 93-104, November.
    14. Kutlu, Levent, 2010. "Battese-coelli estimator with endogenous regressors," Economics Letters, Elsevier, vol. 109(2), pages 79-81, November.
    15. Graziella Bonanno & Filippo Domma, 2022. "Analytical Derivations of New Specifications for Stochastic Frontiers with Applications," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    16. Rouven E. Haschka & Helmut Herwartz & Clara Silva Coelho & Yabibal M. Walle, 2023. "The impact of local financial development and corruption control on firm efficiency in Vietnam: evidence from a geoadditive stochastic frontier analysis," Journal of Productivity Analysis, Springer, vol. 60(2), pages 203-226, October.
    17. Sungho Park & Sachin Gupta, 2012. "Handling Endogenous Regressors by Joint Estimation Using Copulas," Marketing Science, INFORMS, vol. 31(4), pages 567-586, July.
    18. Chen, Yi-Yi & Schmidt, Peter & Wang, Hung-Jen, 2014. "Consistent estimation of the fixed effects stochastic frontier model," Journal of Econometrics, Elsevier, vol. 181(2), pages 65-76.
    19. repec:oup:rfinst:v:21:y:2017:i:4:p:1639-1674. is not listed on IDEAS
    20. Mike G. Tsionas, 2017. "“When, Where, and How” of Efficiency Estimation: Improved Procedures for Stochastic Frontier Modeling," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 948-965, July.
    21. Jarmila Curtiss & Ladislav JelínekD & Tomáš Medonos & Martin Hruška & Silke Hüttel, 2021. "Investors’ impact on Czech farmland prices: a microstructural analysis," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 48(1), pages 97-157.
    22. Conor O’Toole & Carol Newman, 2017. "Investment Financing and Financial Development: Evidence from Viet Nam," Review of Finance, European Finance Association, vol. 21(4), pages 1639-1674.
    23. Alecos Papadopoulos, 2021. "Measuring the effect of management on production: a two-tier stochastic frontier approach," Empirical Economics, Springer, vol. 60(6), pages 3011-3041, June.
    24. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    25. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamonov Mikhail E. & Parmeter Christopher F. & Prokhorov Artem B., 2022. "Dependence modeling in stochastic frontier analysis," Dependence Modeling, De Gruyter, vol. 10(1), pages 123-144, January.
    2. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    3. Alecos Papadopoulos & Christopher F. Parmeter & Subal C. Kumbhakar, 2021. "Modeling dependence in two-tier stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 56(2), pages 85-101, December.
    4. Rouven E. Haschka & Helmut Herwartz, 2022. "Endogeneity in pharmaceutical knowledge generation: An instrument‐free copula approach for Poisson frontier models," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(4), pages 942-960, November.
    5. N. Englezos & X. Kartala & P. Koundouri & M. Tsionas & A. Alamanos, 2023. "A Novel HydroEconomic - Econometric Approach for Integrated Transboundary Water Management Under Uncertainty," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 84(4), pages 975-1030, April.
    6. Sakouvogui Kekoura & Shaik Saleem & Doetkott Curt & Magel Rhonda, 2021. "Sensitivity analysis of stochastic frontier analysis models," Monte Carlo Methods and Applications, De Gruyter, vol. 27(1), pages 71-90, March.
    7. Wondmagegn Tirkaso & Atakelty Hailu, 2022. "Does neighborhood matter? Spatial proximity and farmers’ technical efficiency," Agricultural Economics, International Association of Agricultural Economists, vol. 53(3), pages 374-386, May.
    8. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2016. "Endogeneity in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 190(2), pages 280-288.
    9. Tran, Kien C. & Tsionas, Efthymios G., 2015. "Endogeneity in stochastic frontier models: Copula approach without external instruments," Economics Letters, Elsevier, vol. 133(C), pages 85-88.
    10. Ángel L. Martín‐Román & Jaime Cuéllar‐Martín & Alfonso Moral, 2023. "Natural and cyclical unemployment: A stochastic frontier decomposition and economic policy implications," Bulletin of Economic Research, Wiley Blackwell, vol. 75(1), pages 5-39, January.
    11. Alecos Papadopoulos & Christopher F. Parmeter, 2024. "The wrong skewness problem in stochastic frontier analysis: a review," Journal of Productivity Analysis, Springer, vol. 61(2), pages 121-134, April.
    12. Mustafa U. Karakaplan & Levent Kutlu, 2019. "Estimating market power using a composed error model," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(4), pages 489-510, September.
    13. Koetter Michael, 2008. "An Assessment of Bank Merger Success in Germany," German Economic Review, De Gruyter, vol. 9(2), pages 232-264, May.
    14. Christopher F. Parmeter & Hung-Jen Wang & Subal C. Kumbhakar, 2017. "Nonparametric estimation of the determinants of inefficiency," Journal of Productivity Analysis, Springer, vol. 47(3), pages 205-221, June.
    15. Cuéllar Martín, Jaime & Martín-Román, Ángel L. & Moral, Alfonso, 2017. "A composed error model decomposition and spatial analysis of local unemployment," MPRA Paper 79783, University Library of Munich, Germany.
    16. Mustafa U. Karakaplan & Levent Kutlu, 2019. "School district consolidation policies: endogenous cost inefficiency and saving reversals," Empirical Economics, Springer, vol. 56(5), pages 1729-1768, May.
    17. Amsler, Christine & Prokhorov, Artem & Schmidt, Peter, 2017. "Endogenous environmental variables in stochastic frontier models," Journal of Econometrics, Elsevier, vol. 199(2), pages 131-140.
    18. Phu Nguyen-Van & Nguyen To-The, 2016. "Technical efficiency and agricultural policy: evidence from the tea production in Vietnam," Review of Agricultural, Food and Environmental Studies, Springer, vol. 97(3), pages 173-184, November.
    19. Levent Kutlu & Kien C. Tran & Mike G. Tsionas, 2020. "Unknown latent structure and inefficiency in panel stochastic frontier models," Journal of Productivity Analysis, Springer, vol. 54(1), pages 75-86, August.
    20. Uwe Jensen & Hermann Gartner & Susanne Rässler, 2010. "Estimating German overqualification with stochastic earnings frontiers," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 94(1), pages 33-51, March.

    More about this item

    Keywords

    Stochastic frontier analysis; Skewness; Endogenous regressors; Copula function; Maximum likelihood;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:33:y:2024:i:3:d:10.1007_s10260-024-00750-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.